Mechanical Behavior Of Elastomeric Stamps During Microcontact Printing Patterns: Direct Observation Of Stamps And Inks

2003 ◽  
Vol 778 ◽  
Author(s):  
Gregory S. Blackman ◽  
Anand Jagota ◽  
Kenneth G. Sharp

AbstractMicrocontact printing is a straightforward and effective method for generating surface patterns of micron or submicron lateral dimensions. The fidelity of the ultimate pattern is a complex interplay of mechanical behavior of the elastomeric stamp, fluid transfer between surfaces and the ability of the ink to self-assemble on the new surface. We present here experimental observations and modeling of stamp deformation during precise external loads and visualization of inked surfaces by high contrast analytical methods. Stamp behavior was observed visually in an inverted microscope and load-displacement relationships used to determine onset of failure modes such as roof collapse and buckling of slender relief features as a function of stamp geometry. The load was applied with a glass sphere so as to obviate problems with alignment and to precisely determine contact areas.A “robotic stamper” fabricated from an AFM instrument can deliver ink under conditions of precise load. Surfaces inked with varying densities or combinations of SAMs can be imaged with excellent contrast by scanning surface potential microscopy (SSPM). The same area of the sample can then be examined using time-of-flight SIMS or other surface analytical technique with no additional etching or sample preparation. In this way the fidelity and density of the patterned monolayers can be evaluated. The effect of load on ink pattern quality can also be established.

Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


1972 ◽  
Vol 30 (1) ◽  
pp. 69-90 ◽  
Author(s):  
D.J. Ball ◽  
T.M. Buck ◽  
D. Macnair ◽  
G.H. Wheatley

Author(s):  
Hao Huang ◽  
Abhijit Dasgupta ◽  
Ehsan Mirbagheri ◽  
Srini Boddapati

The focus of this paper is on the stress-strain behavior and creep response of a pressure-sensitive adhesive (PSA) with and without carrier layers. This study consists of two phases. The first phase focuses on understanding of the effects of fabrication profiles, including bonding pressure, bonding temperature, bonding time, and aging time, on the PSA joint strength. This part of the study is used to identify an acceptable bonding and aging conditions for manufacturing a robust PSA bonded assembly. Specimens fabricated with this selected set of bonding process conditions are then used for mechanical characterization. The second phase focuses on the assembly’s mechanical behavior (stress-strain behavior and the creep curves) under different loading conditions, including loading stress, loading rate, and loading temperature. The mechanical behavior of PSA bonded assemblies is affected not only by the loading conditions, but also by the assembly architecture. The mechanical behaviors and failure modes of PSAs with and without carrier layers are compared. The reasons for these differences are also discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yafeng Han ◽  
Xinrong Liu ◽  
Ning Wei ◽  
Dongliang Li ◽  
Zhiyun Deng ◽  
...  

The recent surge of interest towards the mechanical response of rock mass produced by tunnel-type anchorage (TTA) has generated a handful of theories and an array of empirical explorations on the topic. However, none of these have attempted to arrange the existing achievements in a systematic way. The present work puts forward an integrative framework laid out over three levels of explanation and practical approach, mechanical behavior, and calculation method of the ultimate pullout force to compare and integrate the existing findings in a meaningful way. First, it reviews the application of TTA in China and analyzes its future development trend. Then, it summarizes the research results of TTA in terms of load transfer characteristics, deformation characteristics, failure modes, and calculation of ultimate uplift resistance. Finally, it introduces four field model tests in soft rock (mainly mudstone formations), and some research results are obtained. Furthermore, it compares the mechanical behavior of TTA in hard rock strata and soft rock strata, highlighting the main factors affecting the stability of TTA in soft rock formation. This paper proposes a series of focused topics for future investigation that would allow deconstruction of the drivers and constraints of the development of TTA.


Author(s):  
Amirreza Shahani ◽  
Ali Farrahi

The effect of five different stirring times of friction stir spot welding on lap-shear specimens of Al 6061-T6 alloy has been experimentally analyzed. The welding condition with 2 s of stirring shows the optimum mechanical behavior in comparison to the others. The static strength and fatigue behavior of the joint are justified using the microhardness profiles. The static results prove that the increase of stirring time beyond the 2 s case has little effect on improving the static strength. The fatigue results reveal two different failure modes, which are shear fracture at high load levels and transverse crack growth at low load levels. At medium load levels, although the final failure is similar to high load levels, the transverse growth of the crack outside the welding zone, just like low load levels, is also observed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yulong Ge ◽  
Yong Xia

The present work compares the dynamic effect of a self-piercing riveted (SPR) joint with that of a mechanical clinched joint having the dissimilar materials combination. The substrates used in this investigation are aluminum alloy AA5182-O and deep drawing steel DX51D+Z. The static and dynamic behaviors and the failure modes of the SPR and clinching joints are characterized by lap-shear, cross-tension, and coach-peel tests. The influence of the strain-rate-dependent mechanical behavior of the substrates on the joints is examined; this can help improve prediction of the energy absorption of the joints under impact loading. Considering the realistic baking process in a painting shop, the deforming and hardening effects on the SPR and the clinched joints induced by baking are also studied. The specimens are heated to 180°C for 30 min in an oven and then cooled down in air. The SPR and the clinched joints before and after the baking process are compared in terms of the mechanical behavior.


2011 ◽  
Vol 368-373 ◽  
pp. 1617-1620 ◽  
Author(s):  
Kai Quan Xia ◽  
Xiang Gang Zhang ◽  
Zong Ping Chen ◽  
Jiang Mei Wang

In order to assess accurately safety performance of prestressed concrete poles servicing 30 years, bending loading tests are carried out on 3 samples extracted randomly, these ones are studied on the mechanical behavior and failure mechanism, failure modes are revealed, and important experimental data including cracking load, the ultimate load of normal use, the ultimate load of carrying capacity is obtained. Furthermore, based on measured test data, the curves of load-crack width and moment-deflection are made among the whole force process. The results show that failure modes of specimens are similar to one of “rare-reinforced beams”. Moreover, based on design method of serviceability limit state, the average security surplus coefficient is 1.2 before collapse damage.


2012 ◽  
Vol 39 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Loaiza ◽  
J. Fortin ◽  
A. Schubnel ◽  
Y. Gueguen ◽  
S. Vinciguerra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document