scholarly journals A Comprehensive Review of the Mechanical Behavior of Suspension Bridge Tunnel-Type Anchorage

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yafeng Han ◽  
Xinrong Liu ◽  
Ning Wei ◽  
Dongliang Li ◽  
Zhiyun Deng ◽  
...  

The recent surge of interest towards the mechanical response of rock mass produced by tunnel-type anchorage (TTA) has generated a handful of theories and an array of empirical explorations on the topic. However, none of these have attempted to arrange the existing achievements in a systematic way. The present work puts forward an integrative framework laid out over three levels of explanation and practical approach, mechanical behavior, and calculation method of the ultimate pullout force to compare and integrate the existing findings in a meaningful way. First, it reviews the application of TTA in China and analyzes its future development trend. Then, it summarizes the research results of TTA in terms of load transfer characteristics, deformation characteristics, failure modes, and calculation of ultimate uplift resistance. Finally, it introduces four field model tests in soft rock (mainly mudstone formations), and some research results are obtained. Furthermore, it compares the mechanical behavior of TTA in hard rock strata and soft rock strata, highlighting the main factors affecting the stability of TTA in soft rock formation. This paper proposes a series of focused topics for future investigation that would allow deconstruction of the drivers and constraints of the development of TTA.

1996 ◽  
Vol 118 (1) ◽  
pp. 53-61 ◽  
Author(s):  
E. M. Dexter ◽  
M. M. K. Lee ◽  
M. G. Kirkwood

Overlapped joints are generally regarded as having higher strengths than otherwise identical, simple nonoverlapping joints because of the more efficient load transfer between braces. However, not only that relatively little research has been carried out on such joints, the few test data from which current design guidance was derived has also been recently rejected. This paper reports the first phase of a parametric finite element study into the strength of overlapping K joints under axial loading. The numerical models were validated and calibrated against existing gap and overlapped K joint test results, and various factors which affect the relationship between the strength and the overlap amount, such as boundary restraints, hidden welds, loading hierarchy, and failure modes, were investigated. The results of the work presented lay the foundation for a future parametric study.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xutao Zhang ◽  
Mingyang Ren ◽  
Zhaobo Meng ◽  
Baoliang Zhang ◽  
Jinglong Li

Rock material is a kind of mineral assemblage with complex structural heterogeneity, whose mechanical behavior is strongly affected by water or moisture content. In this work, we carried out a series of laboratory tests to investigate the mechanical response (e.g., deformation, strength, and failure characteristics) of Yunnan limestone in natural and saturated states. Our test results show that (1) after saturation, the stiffness and strength of Yunnan limestone degenerate considerably. Compared with the natural condition, the elastic modulus, deformation modulus, and tensile modulus decrease by about 30% on average, and uniaxial compressive strength and tensile strength also decrease by about 15% and 20%, respectively. While Poisson’s ratio is less affected by water content, it can be regarded as a constant; (2) the elastic modulus and deformation modulus of Yunnan limestone are significantly affected by confining pressure, and the relationship between them and confining pressure satisfies the law of hyperbolic function; (3) the peak strength envelope of Yunnan limestone has significant nonlinear characteristics, which can be well described by generalized Hoek-Brown strength criterion. However, the generalized Hoek-Brown criterion does not apply to the residual strength, which shows a linearly increasing trend with the increasing confining pressure; (4) the failure modes of Yunnan limestone are significantly dependent on confining pressure but insensitive to water content. With the increasing confining pressure, the failure modes of Yunnan limestone transform from splitting failure, tension-shear mixed failure, single inclined plane shear failure to Y-shaped or X-shaped conjugated shear failure. The test results can provide important experimental data for the establishment of the constitutive model of Yunnan limestone, which will contribute to obtain more reliable results for stability assessment of Xianglu Mountain Tunnel.


2021 ◽  
Author(s):  
Chi Liu ◽  
Xiaoli Liu ◽  
Huan Sun ◽  
Mingyang Wang ◽  
Chunlu Wu ◽  
...  

Abstract Red-bed soft rock is a geomaterial that displays special deformation and failure characteristics. The stability of red-bed slopes can be negatively impacted by water and stepped excavation disturbance; however, there is limited research regarding the mechanical behavior and failure characteristics of red-bed soft rock under the action of water-rock hydro-mechanical coupling. In this study, to explore the mechanical response and failure mechanisms of red-bed soft rock under coupled water-rock hydro-mechanical action, a visual experimental platform based on digital radiography and a multi-level loading device was constructed. Angiography was used to visualize the rock fracture process by replacing fissure water with a contrast medium. Multi-level loading was applied to cubic red-bed mudstone samples, and acoustic emission signals, stress, flow rate, and digital radiography images were collected during the failure process. An original image processing method based on Hough transform and a convolutional neural network was used to segment and extract cracks from the imagery, and fissure water flow characteristics, rock mechanical response, and crack evolution were analyzed in detail (Liu et al., 2015; Lv et al., 2013, 2014). Results showed that when the Felicity ratio FR was lower than 1.2, water could induce secondary "water-damaged cracks" in the red-bed samples. Study findings were used to highlight the importance of improved early-warning methods for rainfall-induced landslides at an engineering scale. The original experimental platform proposed and evaluated in this study provides a new and powerful tool to investigate the mechanical behavior of different rock types under the action of water-rock hydro-mechanical coupling at a laboratory scale. These findings will facilitate improved disaster prevention strategies for red-bed geological bodies.


Author(s):  
Vasilis Sarhosis ◽  
D. V. Oliveira ◽  
P. B. Lourenco

In this chapter, a review on the mechanical behaviour of masonry is presented. The aim is to establish a base of knowledge and understanding of masonry that will underpin its mechanical characteristics and will inform the decisions towards the selection of the computational tool used which are going to be described in the following chapters. Initially, a brief description of the factors that influence the mechanical response of masonry and the variation of the material properties are discussed. The review then considers the possible causes of cracking in masonry and the different failure modes that may occur during loading. Principal findings from the review are summarised at the end of the chapter.


Author(s):  
Do Huy Thuong ◽  
Nguyen Thi Phuong Hong

This research analysizes the factors affecting the business expectations of human resources in entertainment and event management. The research results have showed that of the 5 factors affecting the human resource expectations of businesses in entertainment and event management, the factor “professional knowledge” has the biggest impact on the expectations of the businesses. Next to it are “attitude”, “skill” and “ability”. The factor “fundamental knowledge” has the least influence on the expectations of the businesses.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhe Liu

Double primary support structures could effectively solve the problem of large deformation of surrounding rock for soft rock tunnels. However, the mechanical behavior of this new support structure is still incomplete, and the design method should be revised. Based on the theory of energy conversion, this paper analyzes the support characteristic curve of double primary support and puts forward the dynamic design method of double primary support. Considering that the secondary lining can be set after monitoring the deformation amount and deformation rate of the first primary support, its support parameters can be dynamically adjusted according to the actual situation. By applying the double primary support design method in the Maoxian tunnel of Chenglan Railway, the field monitoring results show that the double primary support has a significant effect on the energy release of surrounding rocks, greatly reducing the load acting on the secondary lining and ensuring the safety and reliability of the tunnel structure.


2005 ◽  
Vol 127 (7) ◽  
pp. 1158-1167 ◽  
Author(s):  
Adam H. Hsieh ◽  
Diane R. Wagner ◽  
Louis Y. Cheng ◽  
Jeffrey C. Lotz

In vivo rodent tail models are becoming more widely used for exploring the role of mechanical loading on the initiation and progression of intervertebral disc degeneration. Historically, finite element models (FEMs) have been useful for predicting disc mechanics in humans. However, differences in geometry and tissue properties may limit the predictive utility of these models for rodent discs. Clearly, models that are specific for rodent tail discs and accurately simulate the disc’s transient mechanical behavior would serve as important tools for clarifying disc mechanics in these animal models. An FEM was developed based on the structure, geometry, and scale of the mouse tail disc. Importantly, two sources of time-dependent mechanical behavior were incorporated: viscoelasticity of the matrix, and fluid permeation. In addition, a novel strain-dependent swelling pressure was implemented through the introduction of a dilatational stress in nuclear elements. The model was then validated against data from quasi-static tension-compression and compressive creep experiments performed previously using mouse tail discs. Finally, sensitivity analyses were performed in which material parameters of each disc subregion were individually varied. During disc compression, matrix consolidation was observed to occur preferentially at the periphery of the nucleus pulposus. Sensitivity analyses revealed that disc mechanics was greatly influenced by changes in nucleus pulposus material properties, but rather insensitive to variations in any of the endplate properties. Moreover, three key features of the model—nuclear swelling pressure, lamellar collagen viscoelasticity, and interstitial fluid permeation—were found to be critical for accurate simulation of disc mechanics. In particular, collagen viscoelasticity dominated the transient behavior of the disc during the initial 2200s of creep loading, while fluid permeation governed disc deformation thereafter. The FEM developed in this study exhibited excellent agreement with transient creep behavior of intact mouse tail motion segments. Notably, the model was able to produce spatial variations in nucleus pulposus matrix consolidation that are consistent with previous observations in nuclear cell morphology made in mouse discs using confocal microscopy. Results of this study emphasize the need for including nucleus swelling pressure, collagen viscoelasticity, and fluid permeation when simulating transient changes in matrix and fluid stress/strain. Sensitivity analyses suggest that further characterization of nucleus pulposus material properties should be pursued, due to its significance in steady-state and transient disc mechanical response.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


2020 ◽  
Vol 04 (03) ◽  
pp. 9-17
Author(s):  
Quynh Pham ◽  
◽  
Minh Tuan Le ◽  
Thanh Phung ◽  
Thi Huyen Chang Pham

The study was conducted with 02 objectives to describe and analyze some factors affecting the motivation of office and support staffs working at Dong Thap General Hospital in 2017. The research design is cross-sectional, combining quantitative and qualitative methods. Research results show that, the motivation average score of office and support staffs with the general motivation; burnout; job satisfaction; intrinsic job satisfaction; organizational commitment; conscientiousness; timeliness and attendance oscillate from 2.91 to 3.5. The motivation average score of office and support staffs with burnout is lowest and the motivation average score of office and support staffs with conscientiousness is highest. Some factors affecting the motivation of office and support staffs are income policies; training opportunities; satisfaction of colleagues and managers; working environment; equipment and facilities. The research results provide evidence to help the Board of Directors to develop solutions to improve the motivation of office and support staffs in the future. Keywords: job motivation, office and support staffs, hospital.


Sign in / Sign up

Export Citation Format

Share Document