An Intermediate TCE Nanocomposite Coating for Thermal Barrier Coatings

2003 ◽  
Vol 791 ◽  
Author(s):  
Otto J. Gregory ◽  
Markus A. Downey ◽  
Steve Wnuk ◽  
Vince Wnuk

ABSTRACTA NiCoCrAlY /Al2O3 nanocomposite coating was developed for Inconel 718 substrates to improve thermal barrier coatings (TBC's) based on thermally sprayed NiCoCrAlY and alumina. This intermediate TCE coating was deposited by rf sputtering techniques and was instrumental in increasing the fatigue life of both TBC's and thermal spray instrumentation. Combinatorial chemistry techniques were employed to screen a large number of NiCoCrAlY / Al2O3 compositions to yield an optimal composite coating such that the TCE of the metallic bond coat was matched to the ceramic top coat. The resulting combinatorial libraries were thermally fatigued and the composition of the library with the longest fatigue life was determined by X-ray energy dispersive analysis (EDS). A sputtering target of the optimal composition was fabricated by thermal-spraying a mixture of NiCoCrAlY and alumina to simulate the results from the combinatorial chemistry experiments and form a nanocomposite with the desired properties. The sputtered intermediate TCE coating improved the fatigue life of the TBC's by 160% when compared to as-sprayed TBC's formed on Inconel 718 substrates. When a thermally grown oxide was formed on the surface of NiCoCrAlY bond coated substrates prior to deposition of the intermediate TCE coating, a 200% increase in fatigue life was realized. Techniques for extending the fatigue life of other thermal barrier coating systems using this approach will be discussed.

2007 ◽  
Vol 14 (05) ◽  
pp. 935-943 ◽  
Author(s):  
L. YANG ◽  
Y. C. ZHOU ◽  
W. G. MAO ◽  
Q. X. LIU

In this paper, the impedance spectroscopy technique was employed to examine nondestructively the isothermal oxidation of air plasma sprayed (APS) thermal barrier coatings (TBCs) in air at 800°C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also used to characterize the microstructure evolution of TBCs. After oxidation, the thermally grown oxide (TGO), which was mainly composed of alumina as confirmed by EDX, formed at the upper ceramic coat/bond coat interface, the lower bond coat/substrate interface, and the bond coat. Impedance diagrams obtained from impedance measurements at room temperature were analyzed according to the equivalent circuit model proposed for the TBCs. Various observed electrical responses relating to the growth of oxides and the sintering of YSZ were explained by simulating the impedance spectra of the TBCs.


1999 ◽  
Vol 5 (S2) ◽  
pp. 854-855
Author(s):  
M.R. Brickey ◽  
J.L. Lee

Thermal barrier coatings (TBCs) insulate gas turbine hot section components from the hot (∽1200 - 1450°C) combustion gas exhaust stream. An airline company can save millions of dollars per year by using TBCs to protect vital engine components and to improve fuel efficiency. TBCs typically consist of an 8 wt.% yttria-partially-stabilized zirconia (YPSZ) ceramic topcoat deposited on a platinum-nickel-aluminide (Pt-Ni-Al) bondcoat covering a nickel-based superalloy substrate. Thermal exposure during YPSZ electron beam-physical vapor deposition (EB-PVD) and engine operation promotes the formation of a thermally grown oxide (TGO) between the Pt-Ni-Al and the YPSZ layers. Stresses can develop at the Pt-Ni-Al/TGO and TGO/YPSZ interfaces due to TGO growth and thermal expansion coefficient mismatch. These stresses eventually cause spallation of the YPSZ, leaving the metallic substrate vulnerable to high temperature degradation since exhaust temperatures are often higher than the melting temperature of most nickel-based superalloys (∽1200 - 1450°C).


2010 ◽  
Vol 66 ◽  
pp. 74-79
Author(s):  
Jana Schloesser ◽  
Martin Bäker ◽  
Joachim Rösler ◽  
Robert Pulz

In rocket engine combustion chambers, the cooling channels experience extremely high temperatures and environmental attack. Thermal protection can be provided by Thermal Barrier Coatings. Due to the need of good heat conduction, the inner combustion liner is made of copper. The performance of a standard coating system for nickel based substrates is investigated on copper substrates. Thermal cycling experiments are performed on the coated samples. Due to temperature limitations of the copper substrate material, no thermally grown oxide forms at the interface of the thermal barrier coating and the bond coat. Delamination of the coatings occurs at the interface between the substrate and the bond coat due to oxide formation of the copper at uncoated edges. In real service a totally dense coating can probably not be assured which is the reason why this failure mode is of importance. Different parameters are used for thermal cycling to understand the underlying mechanisms of delamination. Furthermore, laser heating experiments account for the high thermal gradient in real service. Pilot tests which led to a delamination of the coating at the substrate interface were performed successfully.


Sign in / Sign up

Export Citation Format

Share Document