Electronic Structure of Native Point Defects in Zngep2

2003 ◽  
Vol 799 ◽  
Author(s):  
Xiaoshu Jiang ◽  
M. S. Miao ◽  
Walter R. L. Lambrecht

ABSTRACTFirst-principles calculations are presented for various native point defects in ZnGeP2 us-ing a full-potential linearized muffin-tin orbital method in the local density approximation to density functional theory. Under Zn-poor conditions, the lowest Gibbs energy defects are found to be the Gezn antisite and Vzn. The Vae is found to have high energy of formation under any chemical potential conditions and is unstable towards formation of a Vzn and ZnGe pair. It is shown that the V−Zn cannot account for the ALI EPR spectrum commonly associated with this vacancy and an alternative model consisting of a Vzn – GeZn – Vzn is tentatively proposed.

2020 ◽  
Vol 38 (2) ◽  
pp. 320-327
Author(s):  
M. Caid ◽  
D. Rached

AbstractThe structural, electronic and optical properties of (AlSb)m/(GaSb)n (m-n: 1-1, 2-2, 1-3 and 3-1) superlattices are investigated within the density functional theory (DFT) by using the last version of the first principles full potential linear muffin tin orbital method (FP-LMTO) as implemented in LmtART 7.0 code. The exchange and correlation potential is treated by the local density approximation (LDA) for the total energy calculations. Our calculations of the band structure show that the superlattices (n ≠ 1) have a direct band gap Γ-Γ. The optical constants, including the dielectric function ϵ(w), the refractive index n(w) and the reflectivity R(w) are calculated and discussed.


2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


Author(s):  
M. I. Heggie ◽  
G. L. Haffenden ◽  
C. D. Latham ◽  
T. Trevethan

The Stone–Wales (SW) transformation, or carbon-bond rotation, has been fundamental to understanding fullerene growth and stability, and ab initio calculations show it to be a high-energy process. The nature and topology of the fullerene energy landscape shows how the I h -C 60 must be the final product, if SW transformations are fast enough, and various mechanisms for their catalysis have been proposed. We review SW transformations in fullerenes and then discuss the analogous transformation in graphite, where they form the Dienes defect, originally posited to be a transition state in the direct exchange of a bonded atom pair. On the basis of density functional theory calculations in the local density approximation, we propose that non-equilibrium concentrations of the Dienes defect arising from displacing radiation are rapidly healed by point defects and that equilibrium concentrations of Dienes defects are responsible for the divergent ultra-high-temperature heat capacity of graphite. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


1985 ◽  
Vol 63 ◽  
Author(s):  
Arthur J. Freeman ◽  
C. L. Fu ◽  
T. Oguchi

ABSTRACTAdvances in all-electron local density functional theory approaches to complex materials structure and properties made possible by the implementation of new computational/theoretical algorithms on supercomputers are exemplified in our full potential linearized augmented plane wave (FLAPW) method. In this total energy self-consistent approach, high numerical stability and precision (to 10 in the total energy) have been demonstrated in a study of the relaxation and reconstruction of transition metal surfaces. Here we demonstrate the predictive power of this method for describing the structural, magnetic and electronic properties of several systems (surfaces, overlayers, sandwiches, and superlattices).


2017 ◽  
Vol 27 (1) ◽  
pp. 65
Author(s):  
Hieu T. Nguyen-Truong ◽  
Tan-Tien Pham ◽  
Nam H. Vu ◽  
Dang H. Ngo ◽  
Hung M. Le

We study the energy-loss function for lead in the framework of the time-dependent density functional theory, using the full-potential linearized augmented plane-wave plus local orbitals method. The ab initio calculations are performed in the adiabatic local density approximation. The comparison between the obtained energy-loss function for zero momentum transfer with those from reflection electron energy loss spectroscopy measurements and from first-principles calculations shows good agreement.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250021 ◽  
Author(s):  
T. BOUGUETAIA ◽  
B. ABIDRI ◽  
B. BENBAHI ◽  
D. RACHED ◽  
S. HIADSI ◽  
...  

The structural, elastic and electronic properties of chalcopyrite compound CuInSe2 and CuGaSe2 have been investigated using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT). In this approach, the local density approximation is used for the exchange-correlation potential using Perdew–Wang parametrization. The equilibrium lattice parameters, bulk modulus, transition pressure, elastic constants and their related parameters such as Poisson's ratio, Young modulus, shear modulus and Debye temperature were calculated and compared with available experimental and theoretical data. They are in reasonable agreement. In this paper the electronic properties are treated with GGA + U approach, which brings out the important role played by the d-state of noble metal (Cu) and give the correct nature of the energy band gap. Our obtained results show that both compounds exhibit semi-conductor behaviour with direct band gap.


2020 ◽  
Author(s):  
Daniel Adam Rehn ◽  
Torbjorn Bjorkman ◽  
Ann Elisabet Wills ◽  
John Michael Wills

2006 ◽  
Author(s):  
Ann Elisabet Mattsson ◽  
Normand Arthur Modine ◽  
Michael Paul Desjarlais ◽  
Richard Partain Muller ◽  
Mark P. Sears ◽  
...  

2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 299
Author(s):  
M. Tedjani

In this theoretical study, we presents  for the first time, to the best of our knowledge, the structural, electronic and elastic properties of perovskite Sr0.5Be0.5TiO3 type structure (Tetragonal), P4/mmm, space group, 123.using full potential linearized augmented plane wave (FP-LAPW) method on the basis of density functional theory (DFT) integrated in the Wien2k code . The generalized gradient approximation (GGA-PBEsol) and local density approximation has been used for the exchange correlation potential .The electronic properties represented by the band structure (BS) and DOS as well as the (PDOS) partial density of states, allowed to obtain  semiconductor compound, which have been calculated with mBJ approximation. The elastic constants were reported and we verified the stability conditions of our materials elastically. These theoretical results open the way for experimental and other theoretical studies of this compound.


Sign in / Sign up

Export Citation Format

Share Document