scholarly journals Energy-loss Function for Lead

2017 ◽  
Vol 27 (1) ◽  
pp. 65
Author(s):  
Hieu T. Nguyen-Truong ◽  
Tan-Tien Pham ◽  
Nam H. Vu ◽  
Dang H. Ngo ◽  
Hung M. Le

We study the energy-loss function for lead in the framework of the time-dependent density functional theory, using the full-potential linearized augmented plane-wave plus local orbitals method. The ab initio calculations are performed in the adiabatic local density approximation. The comparison between the obtained energy-loss function for zero momentum transfer with those from reflection electron energy loss spectroscopy measurements and from first-principles calculations shows good agreement.

2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


1985 ◽  
Vol 63 ◽  
Author(s):  
Arthur J. Freeman ◽  
C. L. Fu ◽  
T. Oguchi

ABSTRACTAdvances in all-electron local density functional theory approaches to complex materials structure and properties made possible by the implementation of new computational/theoretical algorithms on supercomputers are exemplified in our full potential linearized augmented plane wave (FLAPW) method. In this total energy self-consistent approach, high numerical stability and precision (to 10 in the total energy) have been demonstrated in a study of the relaxation and reconstruction of transition metal surfaces. Here we demonstrate the predictive power of this method for describing the structural, magnetic and electronic properties of several systems (surfaces, overlayers, sandwiches, and superlattices).


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 299
Author(s):  
M. Tedjani

In this theoretical study, we presents  for the first time, to the best of our knowledge, the structural, electronic and elastic properties of perovskite Sr0.5Be0.5TiO3 type structure (Tetragonal), P4/mmm, space group, 123.using full potential linearized augmented plane wave (FP-LAPW) method on the basis of density functional theory (DFT) integrated in the Wien2k code . The generalized gradient approximation (GGA-PBEsol) and local density approximation has been used for the exchange correlation potential .The electronic properties represented by the band structure (BS) and DOS as well as the (PDOS) partial density of states, allowed to obtain  semiconductor compound, which have been calculated with mBJ approximation. The elastic constants were reported and we verified the stability conditions of our materials elastically. These theoretical results open the way for experimental and other theoretical studies of this compound.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 520-523
Author(s):  
J. I. LEE ◽  
S. K. HWANG ◽  
S. C. HONG ◽  
A. J. FREEMAN

The electronic structure and surface energy of Zr(0001) is determined theoretically using the all-electron full-potential linearized augmented plane wave method based on local-density functional theory. We found the value of surface energy to be 1.6 J/m 2 which is comparable to the value estimated from experiments on liquid zirconium at the melting point. It is, however, much smaller than the surface energies of W(001), V(001) and bcc Co(001). The calculated valence charge density, workfunction, and layer projected density of states for Zr(0001) are also presented.


2019 ◽  
Vol 9 (3) ◽  
pp. 199-211
Author(s):  
Mohammed Ait Haddouch ◽  
Youssef Tamraoui ◽  
Fatima-Ezzahra Mirinioui ◽  
Youssef Aharbil ◽  
Hicham Labrim ◽  
...  

A series of strontium calcium tungstates Sr1-xCaxWO4 powders with (x = 0; 0.25; 0.5; 0.75 and 1.0) were prepared by solid-state reaction method and analyzed by X-ray diffraction (XRD). All these compositions possess a tetragonal scheelite structure with I41/a space group. Raman active vibrational modes in the range from 20 to 1000 cm-1 of the series Sr1-xCaxWO4 with tetragonal structure exhibit 13 modes in arrangement with the Group theory analysis of structural Raman-active modes. The optical properties were investigated using the diffuse reflectance UV–visible absorbance spectrum. Based on Density Functional Theory (DFT) and using full Potential-linearized Augmented Plane Wave (FP-LAPW) method with the Local Density Approximation and the Generalized Gradient Approximation (GGA), implemented in the Wien2k package, we have investigated electronic and optical properties of all the compositions. The results indicate a decrease in the values of the optical direct bandgap (from 4.29 to 3.87 eV) with the increase of Ca into SrWO4 lattice, which is in good agreement with our experimental results.


1997 ◽  
Vol 3 (S2) ◽  
pp. 659-660
Author(s):  
Jose R. Alvarez ◽  
Peter Rez

Small concentrations of impurities can dramatically change mechanical properties of metals and alloys since they modify bonding and cohesion at grain boundaries. In particular, impurities like B, C, P and S have received considerable attention for their effect on the mechanical properties of Fe. It is known that B and C behave as cohesive enhancers, whereas P and S tend to embrittle iron. Ab initio electronic structure calculations for supercell models of Fe crystals with B, C, P and S impurities have been performed to understand how these impurities modify the electronic states on surrounding atoms The calculations give the charge density distribution, localized densities of states (LDOS) and the total energy of the system. The angular momentum resolved LDOS, when multiplied by slowly varying matrix elements, can be directly related to the experimentally measured electron energy loss near edge structure.The calculations have been performed using two different methods. One is the Linearized Augmented Plane Wave (LAPW) method, in which the Kohn-Sham equations of density functional theory are self-consistently solved within the Local Density Approximation (LDA) to obtain energies and charge distributions of a crystalline system.


2003 ◽  
Vol 793 ◽  
Author(s):  
Daniel I Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

ABSTRACTComplex quaternary chalcogenides (AgSb)xPbn-2xTen (0<x<n/2) are thought to be narrow band-gap semiconductors which are very good candidates for room and high temperature thermoelectric applications. These systems form in the rock-salt structure similar to the well known two component system PbTe (x=0). In these systems Ag and Sb occupy Pb sites randomly although there is some evidence of short-range order. To gain insights into the electronic structure of these compounds, we have performed electronic structure calculations in AgSbTe2 (x=n/2). These calculations were carried out within ab initio density functional theory (DFT) using full potential linearized augmented plane wave (LAPW) method. The generalized gradient approximation (GGA) was used to treat the exchange and correlation potential. Spinorbit interaction (SOI) was incorporated using a second variational procedure. Since it is difficult to treat disorder in ab initio calculations, we have used several ordered structures for AgSbTe2. All these structures show semimetallic behavior with a pseudogap near the Fermi energy. Te and Sb p orbitals, which are close in energy, hybridize rather strongly indicating a covalent interaction between Te and Sb atoms.


2014 ◽  
Vol 92 (7) ◽  
pp. 616-624 ◽  
Author(s):  
Zhichao Liu ◽  
Qiong Wu ◽  
Weihua Zhu ◽  
Heming Xiao

Density functional theory was used to study the structural, electronic, and optical properties of crystalline 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo-[5.5.0.05,903,11]-dodecane (TEX) under hydrostatic pressure. The results indicate that there is a displacive transition in TEX under compression that has never been found in experiments. As the pressure increases, the band gap gradually decreases but presents an abnormal increase at 61 GPa, called the structural transition; moreover, the gap reduction is more pronounced in the low-pressure range compared with the high-pressure range. An analysis of density of states shows that the electronic delocalization in TEX is enhanced gradually under the influence of pressure. The peaks of the imaginary parts of the dielectric functions, energy-loss function, and reflectivity may come mainly from the electron transitions between the oxygen 2p and nitrogen 2p states. The electron energy-loss function presents a blue shift under compression. TEX has relatively higher optical activity at high pressure than at ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document