Project Opalinus Clay – Geoscientific Basis for the Demonstration of Feasibility of Disposal (Entsorgungsnachweis) for SF, Vitrified HLW and Long-Lived ILW in Switzerland

2003 ◽  
Vol 807 ◽  
Author(s):  
A. Gautschi ◽  
A. Lambert ◽  
P. Zuidema

ABSTRACTNagra - the Swiss National Cooperative for the Disposal of Radioactive Waste - has completed a study to determine the suitability of Opalinus Clay as a host rock for a SF/HLW/ILW repository in a potential siting area (reference repository site) in the Zürcher Weinland in northeastern Switzerland. Geoscientific information has been used to a wide extent for the demonstration of siting and engineering feasibility, and for the demonstration of long-term safety. It is shown that the selected area in the Zürcher Weinland fulfils the fundamental requirements placed on a siting area for a deep geological repository and that, in terms of the Opalinus Clay host rock option, the geological environment is advantageous.

2019 ◽  
Vol 133 ◽  
pp. 02005
Author(s):  
Markéta Camfrlová

Nuclear energy accounts for a significant part of the total energy production in the Czech Republic, which is currently facing a problem dealing with the high-level radioactive waste (HLW) and the spent nuclear fuel (SNF). Deep repository is the safest option for storage of HLW. Rock environment of the area must guarantee the stability of the deep geological repository for at least 100,000 years. The aim of the research is a long-term evaluation of the climatic changes of the hypothetical area of interest, which corresponds to the candidate sites for deep geological repository in the Czech Republic. The occurrences of endogenous and exogenous phenomena, which could affect site stability, were evaluated. Concerning exogenous processes, research focuses mainly on the assessment of climatic effects. The climate scenarios for the Central Europe were examined – global climate change, glaciation, and the depth of permafrost as well as CO2 increase.


2021 ◽  
Vol 1 ◽  
pp. 271-273
Author(s):  
Johann Arne Othmer ◽  
Karl-Heinz Lux ◽  
Ralf Wolters ◽  
Jörg Feierabend

Abstract. Within the framework of disposal of radioactive waste in Germany, the question arises how trust in the safety of a future deep geological repository and therefore the acceptability can be increased. One aspect that could contribute to this is the option of long-term monitoring of a deep geological repository by participation of the civil society. Whether and exactly how long-term monitoring of a deep geological repository leads to more trust, is being researched in the transdisciplinary work package TRUST within the research project TRANSENS in cooperation with members of the civil society. For the transdisciplinary processing of specific repository topics, a group of 16 persons from the civil society were recruited, none of which were stakeholders with respect to the topic of repositories. This group is designated as the Working Group Civil Society (AGBe). With the help of 12 members of the AGBe a first workshop on the topic “Monitoring and trust” was carried out on 13 March 2021, supported by partners of the LUH-IRS, the TUBS-IGG and the ETH-TdLab. This article is concerned with the preparation work, the course itself and the knowledge gained from the workshop. It deals with the preparation work in the form of a website and a report on information of the AGBe suitable for those who have been addressed, which has meant a challenge in view of the complexity of the topic of monitoring of a deep geological repository and prior knowledge of the AGBe. Furthermore, the course of the workshop, which was carried out online due to the coronavirus pandemic, is discussed, in which the 12 members of the AGBe and 10 scientists came together. The workshop began with a brainstorming on the topic of monitoring. This was followed by two specialist lectures, in which information on deep geological disposal and monitoring as well as the possibilities and limits of monitoring and monitoring conceptions was presented. The members of the AGBe were then divided into three groups, in which the central research questions of the workshop were discussed: Does a long-term near-field monitoring contribute to trust in the safety of deep geological disposal of radioactive waste? Which aspects of monitoring conceptions could increase trust in the implementation of near-field monitoring and which do not? After the presentation of the results from the group discussion a common discussion was first carried out in the plenum, in which a picture of the sentiments within the AGBe was finally formulated. Furthermore, the knowledge from the three discussion formats of the workshop is presented in this article. This includes the characterization of information and communication with the civil society as a central aspect in relationship with monitoring and trust. Furthermore, it showed that the AGBe views the long-term monitoring of a repository as a suitable measure for gaining trust. However, which aspects of monitoring conceptions contribute significantly to trust in the safe storage of radioactive waste is less clear after this first workshop and could not be conclusively answered. The results of this workshop with the AGBe reflect a first impression in the discussion on monitoring and trust. As monitoring is a complex topic with many interfaces on repository storage and sealing concepts, repository processes and multiple physical simulations as well as on societal topics, the discussion with the AGBe on the topic of monitoring should be continued during the course of the project. Thereby, it must be taken into consideration if the first positive assesments as well as the first AGBe specific requirements regarding long-term near-field monitoring activities will change with increasing knowledge.


2003 ◽  
Vol 807 ◽  
Author(s):  
L. H. Johnson ◽  
J. W. Schneider ◽  
Piet Zuidema ◽  
P. Gribi ◽  
G. Mayer ◽  
...  

ABSTRACTNagra (the Swiss National Cooperative for the Disposal of Radioactive Waste) has completed a study to determine the suitability of Opalinus Clay as a host rock for a repository for spent fuel (SF), high-level waste from reprocessing (HLW) and long-livedintermediate-level waste (ILW). The proposed siting area is in the Zürcher Weinland region of Northern Switzerland. A repository at this site is shown to provide sufficient safety for a spectrum of assessment cases that is broad enough to cover all reasonable possibilities for the evolution of the system. Furthermore, the system is robust; i.e. remaining uncertainties do not put safety in question.


Author(s):  
Rachel C Beaver ◽  
Katja Engel ◽  
W. Jeffrey Binns ◽  
Josh Neufeld

Canada is currently implementing a site selection process to identify a location for a deep geological repository (DGR) for the long-term storage of Canada’s used nuclear fuel, wherein used nuclear fuel bundles will be sealed inside copper-coated carbon steel containers, encased in highly compacted bentonite clay buffer boxes and sealed deep underground in a stable geosphere. Because a DGR must remain functional for a million years, there is value to examining ancient natural systems that serve as analogues for planned DGR components. Specifically, studying the microbiology of natural analogue components of a DGR is important for developing an understanding of the types of microorganisms that may be able to grow and influence the long-term stability of a DGR. This study explored the abundance, viability, and composition of microorganisms in several ancient natural analogues using a combination of cultivation and cultivation-independent approaches. Samples were obtained from the Tsukinuno bentonite deposit (Japan) that formed ~10 mya, the Opalinus Clay formation (Switzerland) that formed ~174 mya, and Canadian shield crystalline rock from Northern Ontario that formed ~2.7 bya. Analysis of 16S rRNA gene amplicons revealed that three of the ten Tsukinuno bentonite samples analyzed were dominated by putative aerobic heterotrophs and fermenting bacteria from the Actinobacteria phylum, whereas five of the Tsukinuno bentonite samples were dominated by sequences associated with putative acidophilic chemolithoautotrophs capable of sulfur reduction.


Author(s):  
Václava Havlová

ÚJV Řež, a.s. as a company with a long term experience in radioactive waste management (RWM) has been running a comprehensive research programme, supporting development of deep geological repository (DGR) in the Czech Republic. Recently ÚJV Řež, a.s. research has focused on the different aspects of safety functions that DGR barriers should provide. Moreover, the research has also recently paid strong attention to real conditions that can be present in DGR (anaerobic reducing conditions, increased T due to heat generation by radioactive waste, contact of different materials within repository, real scale of the rock massive etc.). Both types of experiments, laboratory and in-situ experiments in underground laboratories, were included in the research programme. The presentation gives a brief overview of experimental trends, being conducted for materials and conditions, concerned in Czech repository concept.


2011 ◽  
Vol 322 ◽  
pp. 353-356
Author(s):  
Qing Chun Yang

Safety assessment of nuclear waste disposal in a deep geological repository requires understanding and quantifying radionuclide transport through the hosting geological formation. Determining diffusion parameters under real conditions is necessary for the performance assessment of a deep geological repository where high level wastes are placed for safety disposal. The in situ diffusion and retention (DR) experiments are designed to study the transport and retention properties of the Opalinus clay formation. In this paper, a scoping numerical simulation is performed in Opalinus Clay, The simulated results for all the traces illustrate that the maximum transport distance perpendicular to the bedding is larger in the isotropic case and those along the bedding is larger in the anisotropic case. Tracer depletion in the isotropic case is a little larger than in the anisotropic case. Deuterium and iodide can be detected in the other interval but strontium can’t. Since the length of injection interval is shorter than the transport distance, the anisotropy effect is clearly measurable. This numerical simulation of diffusion experiment aims at contributing to the optimum design of the experiment. The results of this experiment will provide additional insight into the role of diffusion anisotropy and sorption parameters for radionuclides in clays.


2020 ◽  
Vol 225 ◽  
pp. 06012
Author(s):  
Dorota Flamíková ◽  
Vladimír Nečas

The deep geological repository system provides long-term protection against the undesirable effects of ionizing radiation on the population and the environment. An important part of the long-term safety strategy is development of a monitoring program that collects information about the behaviour of the deep geological repository throughout its whole lifetime. A simplified model of the disposal system, geosphere, and biosphere was developed using the GoldSim simulation tool to demonstrate the behaviour of the hypothetical deep geological repository located in crystalline rocks. Also an initial model of the reference biosphere was created based on the scenario of an agricultural habitation (normal evolution scenario) and it was developed based on the recommendations provided in the BIOMASS methodology. After a significant period of time, disposal containers will be degraded and evolution changes in the repository system will occur. Several important parameters appear in the annual effective dose calculation for an individual from critical exposure group within the reference biosphere model. One of them are, for example, distribution coefficients and so-called translocation factors that define the transported rate of released radionuclides into the environment. This paper provides a view into the selected part of the deep geological repository through the data obtained by monitoring during the selected period of time. Simulations describing changes in the repository system. The aim of this contribution is to evaluate the impact of selected changes on the annual effective dose for an adult individual from a critical exposure group while it is assumed, that the respondent consumes contaminated crops and animal products. This model includes various biosphere components and multiple exposure pathways such as inhalation, ingestion and external exposure.


Sign in / Sign up

Export Citation Format

Share Document