Economic assessment of the political and technical management of large-scale public projects. The deployment schedule of France’s deep geological repository of radioactive waste

2019 ◽  
pp. 65-90
Author(s):  
Phuong Hoai Linh Doan
2019 ◽  
Vol 133 ◽  
pp. 02005
Author(s):  
Markéta Camfrlová

Nuclear energy accounts for a significant part of the total energy production in the Czech Republic, which is currently facing a problem dealing with the high-level radioactive waste (HLW) and the spent nuclear fuel (SNF). Deep repository is the safest option for storage of HLW. Rock environment of the area must guarantee the stability of the deep geological repository for at least 100,000 years. The aim of the research is a long-term evaluation of the climatic changes of the hypothetical area of interest, which corresponds to the candidate sites for deep geological repository in the Czech Republic. The occurrences of endogenous and exogenous phenomena, which could affect site stability, were evaluated. Concerning exogenous processes, research focuses mainly on the assessment of climatic effects. The climate scenarios for the Central Europe were examined – global climate change, glaciation, and the depth of permafrost as well as CO2 increase.


2021 ◽  
Vol 1 ◽  
pp. 271-273
Author(s):  
Johann Arne Othmer ◽  
Karl-Heinz Lux ◽  
Ralf Wolters ◽  
Jörg Feierabend

Abstract. Within the framework of disposal of radioactive waste in Germany, the question arises how trust in the safety of a future deep geological repository and therefore the acceptability can be increased. One aspect that could contribute to this is the option of long-term monitoring of a deep geological repository by participation of the civil society. Whether and exactly how long-term monitoring of a deep geological repository leads to more trust, is being researched in the transdisciplinary work package TRUST within the research project TRANSENS in cooperation with members of the civil society. For the transdisciplinary processing of specific repository topics, a group of 16 persons from the civil society were recruited, none of which were stakeholders with respect to the topic of repositories. This group is designated as the Working Group Civil Society (AGBe). With the help of 12 members of the AGBe a first workshop on the topic “Monitoring and trust” was carried out on 13 March 2021, supported by partners of the LUH-IRS, the TUBS-IGG and the ETH-TdLab. This article is concerned with the preparation work, the course itself and the knowledge gained from the workshop. It deals with the preparation work in the form of a website and a report on information of the AGBe suitable for those who have been addressed, which has meant a challenge in view of the complexity of the topic of monitoring of a deep geological repository and prior knowledge of the AGBe. Furthermore, the course of the workshop, which was carried out online due to the coronavirus pandemic, is discussed, in which the 12 members of the AGBe and 10 scientists came together. The workshop began with a brainstorming on the topic of monitoring. This was followed by two specialist lectures, in which information on deep geological disposal and monitoring as well as the possibilities and limits of monitoring and monitoring conceptions was presented. The members of the AGBe were then divided into three groups, in which the central research questions of the workshop were discussed: Does a long-term near-field monitoring contribute to trust in the safety of deep geological disposal of radioactive waste? Which aspects of monitoring conceptions could increase trust in the implementation of near-field monitoring and which do not? After the presentation of the results from the group discussion a common discussion was first carried out in the plenum, in which a picture of the sentiments within the AGBe was finally formulated. Furthermore, the knowledge from the three discussion formats of the workshop is presented in this article. This includes the characterization of information and communication with the civil society as a central aspect in relationship with monitoring and trust. Furthermore, it showed that the AGBe views the long-term monitoring of a repository as a suitable measure for gaining trust. However, which aspects of monitoring conceptions contribute significantly to trust in the safe storage of radioactive waste is less clear after this first workshop and could not be conclusively answered. The results of this workshop with the AGBe reflect a first impression in the discussion on monitoring and trust. As monitoring is a complex topic with many interfaces on repository storage and sealing concepts, repository processes and multiple physical simulations as well as on societal topics, the discussion with the AGBe on the topic of monitoring should be continued during the course of the project. Thereby, it must be taken into consideration if the first positive assesments as well as the first AGBe specific requirements regarding long-term near-field monitoring activities will change with increasing knowledge.


2003 ◽  
Vol 807 ◽  
Author(s):  
A. Gautschi ◽  
A. Lambert ◽  
P. Zuidema

ABSTRACTNagra - the Swiss National Cooperative for the Disposal of Radioactive Waste - has completed a study to determine the suitability of Opalinus Clay as a host rock for a SF/HLW/ILW repository in a potential siting area (reference repository site) in the Zürcher Weinland in northeastern Switzerland. Geoscientific information has been used to a wide extent for the demonstration of siting and engineering feasibility, and for the demonstration of long-term safety. It is shown that the selected area in the Zürcher Weinland fulfils the fundamental requirements placed on a siting area for a deep geological repository and that, in terms of the Opalinus Clay host rock option, the geological environment is advantageous.


Author(s):  
Václava Havlová

ÚJV Řež, a.s. as a company with a long term experience in radioactive waste management (RWM) has been running a comprehensive research programme, supporting development of deep geological repository (DGR) in the Czech Republic. Recently ÚJV Řež, a.s. research has focused on the different aspects of safety functions that DGR barriers should provide. Moreover, the research has also recently paid strong attention to real conditions that can be present in DGR (anaerobic reducing conditions, increased T due to heat generation by radioactive waste, contact of different materials within repository, real scale of the rock massive etc.). Both types of experiments, laboratory and in-situ experiments in underground laboratories, were included in the research programme. The presentation gives a brief overview of experimental trends, being conducted for materials and conditions, concerned in Czech repository concept.


2020 ◽  
Vol 868 ◽  
pp. 15-23
Author(s):  
Radka Pernicova ◽  
David Čítek ◽  
Daniel Dobiáš ◽  
Jiří Kolisko ◽  
Tomáš Mandlík ◽  
...  

This paper deals with the development and research of low pH concrete mixtures intended for the deep geological repository for radioactive waste. Mixtures, in particular those made from materials originating in the Middle Europe, specifically Czech Republic, were designed due to the diversity of the raw materials’ properties. In this first part, a large number of cement mortars were designed, on which the effect of active ingredients (microsilica, slag) on the pH value over time were tested. From the results of the cement mortars’ pH measured after 90 days, a concrete formula was designed. A mixture with a lower proportion of cement and a higher proportion of microsilica seems to be the best. The slag serves only as a supplement in the place value of several weight percent of the total binder volume. Also, the control measurements of basic material characteristics, such as volumetric mass density and compressive strength were performed on these mixtures.


Author(s):  
V.K. Ivanov ◽  
◽  
E.V. Spirin ◽  
A.N. Menyajlo ◽  
S.Yu. Chekin ◽  
...  

The article presents analysis of safety of long-lived high level radioactive waste (RW) disposed for permanent storage in a deep geological repository. According to the study protocol it is necessary to estimate the human and environmental health safety of RW, generated in different nuclear fuel cy-cles, during their long-term stay in the repository. To estimate biological effects, RW composition from thermal reactors in open nuclear fuel cycle (“TR”) and from simultaneously operated thermal and fast reactors in closed nuclear cycle (“TR+FR”) in different time after their disposal have been evaluated. It is suggested that RW to be safe to humans and the environment if committed effective doses from RW components including minor actinides and fission products and from natural urani-um are equivalent (radiation equivalence) or lifetime attributable risks of cancer mortality from RW and natural uranium are equivalent (radiological equivalence). For this purpose it is important to evaluate the time of achievement of radiation or radiological equivalence. To evaluate health effect of RW containing radio-nuclides on the public and the environment their migration activity has been evaluated with the use of distribution coefficient and retardation factor. Probable annual effective doses to the public from exposure to the radionuclides released from the repository to the biosphere at different time after the RW disposal have been estimated. Radiation doses to the public following the consumption of water from the well installed on the repository, and lifetime attributable risk (LAR) of cancer mortality associated with the exposure to radionuclides contained in “TR” and ”TR+FR” generated waste have been evaluated. It turned out that LARs of cancer mortality from “TR+FR” radionuclides is lower than LAR from natural uranium, it means that radiological migration equivalence after its achievement will exists until the repository conditions allow, about 1 billion years. We have found that LARs from “TR+FR” waste is about 100 times lower than the negligible level, 10-6, established in the Russian National Radiation Safety Standards (NRB-99/2009). Estimat-ed LAR of cancer mortality from “TR”-generated waste is 360 times higher than LAR from “TR+FR”-generated waste. As evaluated for the waste from TR radiological equivalence will be achieved not earlier than 1 million years after permanent disposal. If RW is generated in the closed cycle estimat-ed LAR value from consumption of well water does not exceed 10-5 year-1, if RW is generated in open fuel cycle, the LAR value is 10-3 year-1, this is socially unacceptable risk. In the first 10 thousand years after the disposal the major dose- and risk-forming radionuclides in the well water will be 241Am, 239Pu и 240Pu. Estimates of radiation detriment from ”TR” generated waste put to the perma-nent deep geological disposal are given in the article.


Sign in / Sign up

Export Citation Format

Share Document