Influence of catalyzer area and design on the growth of intrinsic hot-wire CVD thin-film silicon for photovoltaic applications

2004 ◽  
Vol 808 ◽  
Author(s):  
Markus Kupich ◽  
Dmitry Grunsky ◽  
Bernd Hofferberth ◽  
Bernd Schröder

ABSTRACTRecently, hot-wire deposited microcrystalline silicon has attracted increasing attention. The use of hot-wire deposited intrinsic μc-Si:H for high efficiency solar cells was demonstrated by Klein et al. [1]. Integration of high-quality intrinsic μc-Si:H into all-hot-wire nip solar cells, prepared close to the transition to amorphous growth using a tantalum catalyzer, resulted in initial and stable efficiencies of 5.4 % on simple stainless steel substrates [2]. However, the deposition rates for the absorber material in both cases remained low, at values around 1 Å/s.In the present study we report on the dependence of deposition rate and material quality on the design and area of the tantalum catalyzer. It was found that different filament geometries require considerable changes in certain deposition conditions to optimize material properties. So, for example, enlarging the catalyzer surface made it necessary to decrease the hydrogen dilution of the process gas, in order to obtain the desired microcrystalline material close to the phase transition. These changes might be understood in terms of alterations of the gas decomposition relations on the catalyzer surface. For these modified conditions, deposition rates in the range of 2.5-10 Å/s could be achieved for μc-Si:H due to the fact that a higher silane fraction of the process gas could be used. For different wire geometries, the optimized intrinsic layers were incorporated into solar cells. Using a catalyzer with modified geometry and enlarged surface area, conversion efficiencies of ν = 4.4 % could be achieved for all-μc-Si:H, all-HWCVD solar cells at a rate of about 3 Å/s.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


MRS Advances ◽  
2019 ◽  
Vol 4 (64) ◽  
pp. 3545-3552
Author(s):  
Martina Pantaler ◽  
Selina Olthof ◽  
Klaus Meerholz ◽  
Doru C. Lupascu

AbstractReported conversion efficiencies of lead based perovskite solar cells keep increasing steadily. But next to the demand for high efficiency, the need for analogue non-toxic material systems remains. One promising lead free absorber material is the double perovskite Cs2AgBiBr6. Interest in this and other double perovskites has been increasing in the last three years and several solar cells using different device structures have been reported. However, the efficiency of these solar cells is merely in the range of 2%. To further improve solar cell performance we prepared mixed bismuth-antimony double perovskite Cs2AgBi1-xSbxBr6 where different fractions of antimony (x=0.125, 0.25, 0.375, 0.50) are used. This was motivated by reports of lower bandgap values in these mixed system. After the optimization of preparation of these thin films, we have carefully analysed the effects on the structure, composition, electronic structure, as well as optical properties. Finally, we have fabricated Bi-Sb mixed double perovskite solar cells in a mesoscopic device architecture.


2011 ◽  
Vol 104 (1) ◽  
pp. 407-413 ◽  
Author(s):  
Sophie E. Gledhill ◽  
Anton Zykov ◽  
Thorsten Rissom ◽  
Raquel Caballero ◽  
Christian A. Kaufmann ◽  
...  

2001 ◽  
Vol 664 ◽  
Author(s):  
Urban Weber ◽  
Bernd Schroeder

ABSTRACTThe effect of moderate hydrogen dilution of the process gas, F(H2)/F(SiH4) = 0 to 3, on the properties of amorphous silicon is discussed for material and solar cells deposited by Hot-Wire CVD. Dielectric properties were obtained from spectroscopic ellipsometry and are related to stability and hydrogen bonding configuration of films deposited with varying hydrogen dilution at different substrate temperatures. The stability was determined by comparing defect densities obtained from photoconductivity spectroscopy in the constant photocurrent mode (CPM) before and after pulsed-light soaking. At low substrate temperatures, which are relevant for the prepara- tion of pin-type solar cells (160-200°C), moderate hydrogen dilution (∼0.3) improves material quality regarding density and network disorder (oscillator bandwidth) as obtained from spectro-scopic ellipsometry, resulting in a higher stability. At higher substrate temperatures (300°C), stability and hydrogen bonding configurations are generally better, but moderate hydrogen dilu-tion already deteriorates these properties compared to material prepared without dilution. The incorporation of Hot-Wire-a-Si:H into pin-type solar cells is also discussed and a good correlation of ellipsometric results with bulk-related properties of solar cell performance is observed. The optimum hydrogen dilution is found to be 0 to 0.3 for i-layer deposition yielding initial efficiencies of up to 8.9% for solar cells entirely fabricated by Hot-Wire CVD.


2005 ◽  
Vol 862 ◽  
Author(s):  
Yaohua Mai ◽  
Stefan Klein ◽  
Reinhard Carius ◽  
Xinhua Geng ◽  
Friedhelm Finger

AbstractIntrinsic microcrystalline silicon (μc-Si:H ) was prepared at high deposition rates (RD) by very high frequency plasma-enhanced chemical vapor deposition (PECVD) working at high-pressure high-power (hphP). The material has similar electrical and optical properties as μc-Si:H material deposited at low rates by low-pressure low-power PECVD, apart from a more pronounced structure in-homogeneity along the growth axis for material deposited on glass substrates. With optimized deposition conditions high efficiency solar cells can be grown with deposition rates of up to 15 Å/s without deterioration of the performance as a function of RD. A high conversion efficiency of 9.8 % was obtained for a single junction μc-Si:H p-i-n solar cell at a deposition rate of RD = 11 Å/s.


2008 ◽  
Author(s):  
Bernd Ahrens ◽  
Bastian Henke ◽  
Paul T. Miclea ◽  
Jacqueline A. Johnson ◽  
Stefan Schweizer

Sign in / Sign up

Export Citation Format

Share Document