Magnetic Properties of E21-base Co3AlC and the Correlation with the Ordering of Carbon Atoms and Vacancies

2004 ◽  
Vol 842 ◽  
Author(s):  
Yoshisato Kimura ◽  
Fu-Gao Wei ◽  
Hideyuki Ohtsuka ◽  
Yoshinao Mishima

ABSTRACTTargeting to develop E21 Co3AlC based heat resistant alloys, phase stability of E21 Co3AlC and (Co, Ni)3AlC has been investigated together with the magnetic properties of E21’ Co3AlC0.5 which is formed by the extra ordering of carbon atoms accompanying anti-phase boundary (APB). The correlation of ferromagnetism with APB in E21’ Co3AlC0.5 was evaluated using single crystals by high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer. Anti-phase domain (APD) size affects the ferromagnetism: for instance, the saturation magnetization becomes larger as the APD size is smaller. Local atomic configuration at APB was clearly observed by HRTEM image.

2010 ◽  
Vol 148-149 ◽  
pp. 998-1002 ◽  
Author(s):  
Xiao Yun Chen ◽  
Hua Li ◽  
Yue Zeng Su ◽  
Zi Shan Huang ◽  
He Zhou Liu

Spinel CoFe2O4 nano-particles were synthesized by hydrothermal traditionally and Ethylene Glycol (EG) assisted hydrothermal process originally. The effects of reaction temperatures from 140°C to 200°C, different OH- provider and EG/water ratio on the nano-particles’ structure, morphology and magnetic properties of composition were studied by X-ray diffractometer (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The possible mechanism for the effects on the properties was also discussed in details. The results showed that NaAC as OH- provider and higher EG/water ratio in solvent were benefit for getting smaller CoFe2O4 nano-particles. And existence of EG is also important to remove the α-Fe2O3 phase.


2019 ◽  
Vol 7 (5) ◽  
pp. 1280-1291 ◽  
Author(s):  
Alaka Panda ◽  
R. Govindaraj ◽  
R. Mythili ◽  
G. Amarendra

Bismuth and iron oxides subjected to ball milling followed by controlled annealing treatments showed the formation of core–shell nanostructures with Bi2Fe4O9 as the core and a shell of BiFeO3 and Bi25FeO40 phases as deduced based on the analysis of transmission electron microscopy results.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


Author(s):  
Sam Ick Son ◽  
Su Jin Chung

AbstractThe relation between the domains and domain boundaries of multiple twins of diamond were investigated by the electron back scatter diffraction (EBSD) method and high resolution transmission electron microscopy (HRTEM). Multiple twinned diamonds have two types of icosahedral morphologies. One is an almost perfect icosahedron in which all of the faces are {111} faces. The other is a hollow icosahedron similar to one of the Kepler-Poinsot polyhedrons. The indented negative trigonal faces are formed from the {100} faces of a cube. It was confirmed that the convex edges of the twinned icosahedron corresponded to the Σ3 boundaries, whereas the concave edges were assigned to the Σ9 twin boundary by means of the EBSD analysis.It was confirmed from the HRTEM image that a series of dislocations compensate for the mismatching angle which occurs after five successive twinning.


2006 ◽  
Vol 20 (10) ◽  
pp. 549-555 ◽  
Author(s):  
JUN WANG ◽  
YUEJIN ZHU ◽  
YEJUN WU ◽  
CHANGJUN WU ◽  
DONGFENG XU ◽  
...  

Nanoshells composed of close-packed nickel nanoparticles have been fabricated on sillca spheres via strong interaction between the metallic cations and ions of the support. The nickel hollow nanoballs can be self-assembled via magnetic field-assisted route, which is confirmed by the transmission electron microscopy. The magnetic properties of Ni nanoshells are discussed. It is expected that the prepared method can be extended to the synthesis of other hollow metal spheres.


2013 ◽  
Vol 385-386 ◽  
pp. 7-10
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown double-layered films were synthesized with a FePt: C composite layer on top of continuous FePt underlayer. The thickness of FePt was changed from 2 nm to 14 nm. Nanostructures, crystalline orientations and the effect of FePt underlayer on the ordering, orientation and magnetic properties of the thin films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). XRD confirmed the formation of the ordered L10phase for 5 nm FePt: C film with FePt thickness decreased to 5 nm. TEM studies of FePt:C composite L10phase and double-layered deposition FePt:C/FePt were presented.


Sign in / Sign up

Export Citation Format

Share Document