Migration Behavior of Cesium in Compacted Bentonite Under Reducing Conditions Using Electromigration

2006 ◽  
Vol 932 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Masaru Yamamoto ◽  
Yosuke Yamasaki ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima

ABSTRACTCarbon steel overpack will be corroded by consuming oxygen introduced by repository construction after closure of repository and then will keep the reducing environment in the vicinity of repository. The migration of iron corrosion products through the buffer material will affect migration of redox-sensitive radionuclides. Therefore the authors have carried out electromigration experiments with source ofiron ions supplied by anode corrosion of iron coupons in compacted bentonite. However, their migration behavior was complex and difficult to explain. Thus, authors tried to use cesium, whose migration behavior is well known, inthis experimental configuration to obtain knowledge of the migration behavior of cations. The concentrationsof iron and sodium showed nearly complementary distributions. It is expected that iron ion could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. On the other hand, cesium profiles seemed to be controlled by ordinary diffusion. Drift of the cesium profile by electric potential gradient could be observed clearly only after 240 h. Apparent dispersion coefficients of cesium were calculated from the profiles and were in reasonable agreement with literature values of apparent diffusion coefficients. Thus this experiment can provide a diffusion field for cations under a reducing condition with ferrous ions in water-saturated bentonite. The effect of electro-osmotic flow on ion migration was negligibly small in this experiment because electro-osmotic flow was compensated by hydraulic pressure caused by the water content gradient developed in the specimen within 24h.

2006 ◽  
Vol 985 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Yosuke Yamasaki ◽  
Syeda Afsarun Nessa ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima ◽  
...  

AbstractCarbon steel is one of the candidate overpack materials for high-level waste disposal and is expected to assure complete containment of vitrified waste glass during an initial period of 1000 years in Japan. Carbon steel overpack will be corroded by consuming oxygen introduced by repository construction after closure of repository and then will keep the reducing environment in the vicinity of repository. The migration of iron corrosion products through the buffer material will affect migration of redox-sensitive radionuclides. Therefore the authors have carried out electromigration experiments with source of iron ions supplied by anode corrosion of iron coupons attached to compacted bentonite. Authors tried to use plutonium in this experimental configuration to obtain the knowledge of migration behavior of actinides. Authors also used cesium as reference. The concentrations of iron and sodium showed nearly complementary distributions. It is expected that iron ion could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Concentration profiles of plutonium in bentonite grew as time supplying electric potential as long as 168 h. Plutonium migrated from the iron anode toward cathode as deeper than 1 mm of the interior of bentonite even in 48 h, though plutonium could not diffuse 1 mm for 2 years. On the other hand, profiles of cesium seemed to be controlled by ordinary diffusion because of large diffusion coefficient of cesium in bentonite as large as 10$^{-12}$ m$^{2}$/s. Drift of the cesium profile by electric potential gradient could be observed clearly after 240 h at individual experiment for cesium. Apparent dispersion coefficients of plutonium were calculated from the profiles and were as large as 10$^{-13}$ m$^{2}$/s. Since plutonium migration was accelerated by electric potential, plutonium chemical species would have positive charge and were estimated as PuOH$^{2+}$ or PuCl$^{2+}$ by the thermodynamic calculation. Thus this experiment can provide a diffusion field for cations under a reducing condition with ferrous ions in water-saturated bentonite.


2008 ◽  
Vol 1107 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Syeda Afsarun Nessa ◽  
Shigeru Yamazaki ◽  
Hirotomo Ikeuchi ◽  
Yaohiro Inagaki ◽  
...  

AbstractCarbon steel overpack is corroded by consuming oxygen introduced by repository construction after closure of the repository and then maintains the reducing environment in the vicinity of the repository. The migration of iron corrosion products through the buffer material will affect the migration of redox-sensitive radionuclides. Therefore, it is important to study the migration of iron corrosion products through the buffer material because it may affect the corrosion rate of overpack, and migration of redox-sensitive radionuclides. Electromigration experiments have been conducted with the source of iron ions supplied by anode corrosion of the iron coupon in compacted bentonite. The carbon steel coupon was connected as the working electrode to the potentiostat and was held at a constant supplied potential between - 650 to +300 mV vs. Ag/AgCl electrode for up to 168 hours. The amount of iron penetrated into a bentonite specimen was in good agreement with the calculated value from the corrosion current under the assumption that iron is dissolved as ferrous ions. A model using dispersion and electromigration could explain the measured iron profiles in the bentonite specimens. The fitted value of electromigration velocity depended on the potential supplied. On the other hand the fitted value of the dispersion coefficient did not depend on the potential supplied but a constant. This constant dispersion coefficient could be due to the much larger diffusion coefficient of ferrous ion in bentonite compared with the effect of mechanical dispersion. The experimental configurations used in this study are applicable to the examination of the migration behaviour of cations with the source of iron ions under a reducing condition controlled with a potentiostat.


2006 ◽  
Vol 932 ◽  
Author(s):  
K. Tanai ◽  
M. Yui

ABSTRACTThis paper presents a study on gas migration behavior in a bentonite specimen with the aid of X-ray computer tomography (CT) scan data. The laboratory experiment was carried out to clarify gas migration behavior through saturated, compacted bentonite. X-ray CT was used to estimate the spatial distribution of gas and water saturation during gas migration test in the bentonite. For the gas migration test, the controlled flow rate of gas injection was adopted for pre-compacted samples of Kunigel V1 bentonite using helium gas, which is safer than hydrogen gas.A specimen was isotropically consolidated and saturated by synthetic seawater, simultaneously, by applying a backpressure. This was followed by injecting the gas using a syringe pump. Inlet and outlet gas fluxes were monitored. This test exhibited a significant threshold pressure for breakthrough, somewhat larger than the sum of the swelling pressure and the backpressure.The procedure of the X-ray CT measurement is as follows; i) measurement of the initial condition (saturated condition) of the compacted bentonite, ii) measurement of the gas injection condition as a function of time. The digital data obtained from the X-ray CT usually includes some noise. The stacking method can reduce the noise in CT values and enables to identify the gas migration area. The results indicate that gas is transported through preferential pathways in compacted bentonite, and is not homogenous.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Daisuke Akiyama ◽  
Yoshihiko Matsuki ◽  
Yusuke Irie ◽  
Yaohiro Inagaki ◽  
...  

ABSTRACTAfter the closure of a high-level waste repository, corrosion of the carbon steel overpack will occur. The corrosion products can then migrate into bentonite and affect the migration behavior of radionuclides in bentonite. Therefore, electrochemical experiments, with Fe2+ supplied by anodic corrosion of carbon steel, were carried out to study trivalent lanthanides in compacted bentonite. The interface between a carbon steel coupon and bentonite (dry density, 1.5 Mg/m3) was spiked with a tracer solution containing Nd(NO3)3, Eu(NO3)3, Dy(NO3)3, and Er(NO3)3. The carbon steel coupon was connected as the working electrode to a potentiostat and held at a constant potential between -550 and 0 mV (vs. Ag/AgCl reference electrode) for 7 days. A model using dispersion and electromigration could explain the measured profiles in the bentonite specimens. The best-fit electromigration velocity was related to the applied electric potential and was 1.0–3.8 nm/s for Nd, Eu, Dy, and Er ions. For these lanthanides, the best-fit dispersion coefficient was also related to the applied potential and was 0.8–1.6 μm2/s, and the dispersion length was calculated as 0.2 mm from the linear relationship between the dispersion coefficient and electromigration velocity. Finally, the apparent diffusion coefficient for these lanthanides was estimated as 0.6–0.9 μm2/s.


1997 ◽  
Vol 506 ◽  
Author(s):  
Mamoru Nakajima ◽  
Tamotsu Kozaki ◽  
Hiroyasu Kato ◽  
Seichi Sato ◽  
Hiroshi Ohashi

ABSTRACTCompacted bentonite is a candidate buffer material in geological disposal of high-level radioactive waste. The transport of radionuclides in compacted bentonite is dominated by diffusion, because of its very low permeability. In this study, we focused on the grain size of clay mineral, which is considered to be closely related to the formation factor in the pore water diffusion model[1,2]. The apparent diffusion coefficients (Da) of HTO and cesium ions in compacted clays were determined using montmorillonite samples with different grain size and dry density, and the effect of the grain size on diffusion behavior was discussed.


MRS Advances ◽  
2016 ◽  
Vol 1 (61) ◽  
pp. 4011-4017
Author(s):  
Ryo Hamada ◽  
Noriyuki Maeda ◽  
Kazuya Idemitsu ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima ◽  
...  

ABSTRACTIn disposing of high-level radioactive waste, the drop in pH in the repository as the iron overpack corrodes must be considered. Plutonium migration behavior may be affected by the pH of pore water in compacted bentonite barriers in high-level waste repositories. To examine the effect of pH on migration behavior, H-bentonite was prepared by treating Japanese Na-bentonite, Kunipia-F, with hydrochloric acid. Diffusion experiments were performed with mixtures of Na- and H-bentonites. The pH value in the pore water of the water-saturated bentonite mixtures decreased from 8 to 3 as the mixing ratio of H-bentonite increased. Diffusion experiments were carried out by using238Pu then apparent diffusion coefficients were determined from the plutonium distribution in the specimens. The apparent diffusion coefficients were on the order of 10-13to 10-12m2/s at pH values lower than 4, whereas they were less than 10-14m2/s at pH values higher than 6.5. These results indicate that plutonium diffused faster as Pu3+or PuO22+due to disproportionation at lower pH while plutonium could be retarded as Pu(OH)40by sorption on bentonite at higher pH.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Daisuke Akiyama ◽  
Akira Eto ◽  
Yoshihiko Matsuki ◽  
Yaohiro Inagaki ◽  
...  

AbstractCarbon steel overpack will corrode by consuming oxygen introduced during repository construction after closure of repository, that will keep the environment in the vicinity of repository reducing. The iron corrosion products can migrate in bentonite as ferrous cations (Fe2+) through the interlayer of montmorillonite replacing the exchangeable sodium ions in the interlayer. This replacement of sodium may affect the migration behavior in the altered bentonite not only for redox-sensitive elements but also the other ions. Therefore we have carried out electrochemical analysis, of calcium, strontium or barium with the ferrous ion supplied by anodic corrosion of iron coupons in compacted bentonite. Fifteen micro liters of tracer solution containing 8.6 M of CaCl2 or 3.0 M of SrCl2 or 1.5 M BaCl2 were sspiked on the interface between the iron coupon and bentonite, for which the dry density was in the range of 1.4 to 1.5 Mg/m3, before assembling. The iron coupons were connected as working electrodes to the potentiostat and held at a constant supplied potential between - 500 to +300 mV (vs. Ag/AgCl reference electrode) for up to 7 days. Calcium and strontium could migrate faster and deeper into the bentonite than iron in each condition, while barium could migrate slower than iron. A model using dispersion and electromigration can explain the measured profiles in the bentonite specimens. The fitted value of electromigration velocity was a function of applied electrical potential and 10 to 23 nm/s for calcium, 11 to 19 for strontium, around 4 nm/s for barium and 5 to 15 nm/s for iron, respectively. Alternatively, the fitted value of the dispersion coefficient was not a function of applied potential, and the values were 3 - 8 × 10-12 m2/s for calcium, 2 - 4 × 10-12 m2/s for strontium, 5 - 10 × 10-12m2/s for barium and 3 - 9 × 10-12 m2/s for iron, respectively.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Hirotomo Ikeuchi ◽  
Daisuke Akiyama ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima

AbstractCarbon steel overpack will corrode by consuming oxygen introduced by repository construction after closure of repository and then will keep the reducing environment in the vicinity of repository. The iron corrosion products can migrate in bentonite as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. This replacement of sodium with ferrous ion may affect the migration behavior in the altered bentonite not only for redox-sensitive elements but also the other ions. Therefore the authors have carried out electromigration experiments of potassium or rubidium with source of iron ions supplied by anode corrosion of iron coupon in compacted bentonite. Five to fifteen micro liter of tracer solution containing 3.3 M of KCl or 2.2 M of RbCl was spiked on the interface between an iron coupon and bentonite, which dry density was around 1.4 Mg/m3, before assembling. The iron coupon was connected as the working electrode to the potentiostat and was held at a constant supplied potential between - 600 and 300 mV vs. Ag/AgCl reference electrode for up to 8 days. Potassium could migrate faster and deeper in bentonite specimen than iron in each condition. On the other hand rubidium could migrate slower than iron. Migration velocity was a function of applied electrical potential and 8 to 14 nm/s for potassium, 5 to 10 nm/s for iron and 3 to 5 for rubidium, respectively. Dispersion coefficient was also a function of applied potential and 10 to 14 × 10−12 m2/s for potassium, 4 to 8 overv 10−12 m2/s for rubidium and 2 to 4 overv 10−12 m2/s for iron, respectively. Diffusion experiments were also carried out for comparison. Potassium and rubidium might migrate slightly slower in the altered bentonite by iron corrosion than in ordinary compacted bentonite.


MRS Advances ◽  
2017 ◽  
Vol 2 (12) ◽  
pp. 693-698 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Noriya Okubo ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima ◽  
Daisuke Akiyama ◽  
...  

ABSTRACTIn disposal of high-level radioactive waste, carbon steel overpack will be corroded after closure of the repository, creating a reducing, low-pH environment around the repository. A plutonium diffusion experiment was performed over 15 years with Kunigel V1, which is a typical Japanese bentonite that contains about 50% montmorillonite, in contact with an iron coupon. A tracer solution (10 µL) containing 1 kBq of 238Pu was applied at the interface between the iron coupon and compacted bentonite that was saturated with deionized water. After the diffusion period, the plutonium distribution in the bentonite specimen was measured with an alpha scintillation counter, and the iron and sodium distributions were obtained by inductively coupled plasma-mass spectrometry. Plutonium penetrated into the bentonite to a depth of 2 mm, and more than 90% of plutonium remained in corrosion product at the interface. The bentonite around the interface was dark green like green rust or magnetite according to visual observation. Iron was detected throughout the bentonite and there was a particularly high iron concentration from the interface to a depth of 2 mm, whereas the sodium concentration decreased slightly from the interface to 2 mm. We proposed that ferrous ions diffused into bentonite as the iron coupon corroded and precipitated such as magnetite. The magnetite precipitation would decrease the bentonite pH, resulting in the dissolution and migration of plutonium. Small cracks were also observed 2 to 6 mm from the interface and could have been formed by the migration of hydrogen generated by corrosion.


2014 ◽  
Vol 1665 ◽  
pp. 79-84
Author(s):  
Daisuke Akiyama ◽  
Kazuya Idemitsu ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima ◽  
Kenji Konashi ◽  
...  

ABSTRACTThe migration behavior of plutonium is expected to be affected by the corrosion products of carbon steel in compacted bentonite at high-level waste repositories. Electrochemical experiments were carried out to simulate the reducing environment created by ferrous iron ions in equilibrium with anoxic corrosion products of iron. The concentration profiles of plutonium could be described by the convection -dispersion equation to obtain two migration parameters: apparent migration velocity Va and apparent dispersion coefficient Da. The apparent migration velocity was evaluated within 1 nm/s and was found to be independent of the experiment duration and the dry density of bentonite in the interval 0.8-1.4 Mg/m3. The apparent dispersion coefficient increased with the experiment duration at a dry density of 1.4 Mg/m3. The results for other dry densities also showed the same trend. These findings indicate that plutonium migration likely starts after ferrous ions reach the plutonium, in other words, the reducing environment due to ferrous ions could change the chemical form of plutonium and/or the characteristics of compacted bentonite. The apparent diffusion coefficient was estimated to be around 0.5 to 2.2 µm2/s and increased with decreasing the dry density of bentonite.


Sign in / Sign up

Export Citation Format

Share Document