A Study on Gas Migration Behavior in Buffer Material using X-ray CT Method

2006 ◽  
Vol 932 ◽  
Author(s):  
K. Tanai ◽  
M. Yui

ABSTRACTThis paper presents a study on gas migration behavior in a bentonite specimen with the aid of X-ray computer tomography (CT) scan data. The laboratory experiment was carried out to clarify gas migration behavior through saturated, compacted bentonite. X-ray CT was used to estimate the spatial distribution of gas and water saturation during gas migration test in the bentonite. For the gas migration test, the controlled flow rate of gas injection was adopted for pre-compacted samples of Kunigel V1 bentonite using helium gas, which is safer than hydrogen gas.A specimen was isotropically consolidated and saturated by synthetic seawater, simultaneously, by applying a backpressure. This was followed by injecting the gas using a syringe pump. Inlet and outlet gas fluxes were monitored. This test exhibited a significant threshold pressure for breakthrough, somewhat larger than the sum of the swelling pressure and the backpressure.The procedure of the X-ray CT measurement is as follows; i) measurement of the initial condition (saturated condition) of the compacted bentonite, ii) measurement of the gas injection condition as a function of time. The digital data obtained from the X-ray CT usually includes some noise. The stacking method can reduce the noise in CT values and enables to identify the gas migration area. The results indicate that gas is transported through preferential pathways in compacted bentonite, and is not homogenous.

Author(s):  
Antti Lempinen

Compacted bentonite is the main candidate for buffer material in several plans for spent nuclear fuel repositories. One of its important properties is high swelling capacity, which is caused by interaction between water molecules and exchangeable cations. This interaction makes bentonite behave differently from capillary materials. In this article, a model for thermo-hydro-mechanical state of partially water saturated bentonite is presented. It couples the water retention and swelling properties with introduction of the swelling factor in effective strain. The Helmholz energy density determines the state with a relatively small set of independent parameters: swelling pressure, swelling factor, maximum confined water content and the reference state. The model parameters are determined from experimental data for FEBEX bentonite, and as a simple consistency check, confined suction curves are calculated and compared to test results. Consistency of the model with observations on nano- and microscale of bentonite is also discussed.


2003 ◽  
Vol 40 (2) ◽  
pp. 460-475 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonite and sand–bentonite mixtures are attracting greater attention as buffer material for repositories of high-level nuclear waste. This buffer material is expected to fill up the space between the canisters containing the waste and the surrounding ground by swelling. To produce the specifications, such as dry density, sand–bentonite mass ratio, and dimensions, of the buffer material, the swelling characteristics of compacted bentonite and sand–bentonite mixtures must be evaluated quantitatively. New equations for evaluating the swelling behavior of compacted bentonite and sand–bentonite mixtures are presented that can accommodate the influences of the sand–bentonite mass ratio and the exchangeable-cation composition of bentonite. The new method for predicting swelling characteristics is presented by combining the new equations with the theoretical equations of the Gouy–Chapman diffuse double layer theory and of the van der Waals force, which can evaluate the repulsive and attractive forces of montmorillonite mineral (i.e., the swelling clay mineral in bentonite). Furthermore, the applicability of the new prediction method has been confirmed by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites and sand–bentonite mixtures.Key words: bentonite, diffuse double layer theory, van der Waals force, nuclear waste disposal, swelling deformation, swelling pressure.


Author(s):  
Shun Kimura ◽  
Hideharu Takahashi ◽  
Ari Hamdani ◽  
Masanori Aritomi ◽  
Susumu Ozaki ◽  
...  

Compacted bentonite materials are often considered as a buffer material in the geological radioactive waste disposal. This bentonite is expected to fill up the space between the waste and the surrounding ground by swelling. Therefore, understanding the surrounding ground, i.e., groundwater behavior in bentonite, as a buffer material, is essential in order to evaluate the bentonite buffer performance and guarantee long-term safety. The monitoring system of the water saturation level in compacted bentonite is required because water content in buffer material may influence its elastic properties. In this study, the correlation between water content and elasticity in unsaturated compressed bentonite was experimentally evaluated. The evaluation was done by measuring the sound velocity of both longitudinal wave and transverse wave. As a result, it can be confirmed that ultrasonic velocities could evaluate a degree of saturation and bulk modulus of compacted bentonite.


2006 ◽  
Vol 985 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Yosuke Yamasaki ◽  
Syeda Afsarun Nessa ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima ◽  
...  

AbstractCarbon steel is one of the candidate overpack materials for high-level waste disposal and is expected to assure complete containment of vitrified waste glass during an initial period of 1000 years in Japan. Carbon steel overpack will be corroded by consuming oxygen introduced by repository construction after closure of repository and then will keep the reducing environment in the vicinity of repository. The migration of iron corrosion products through the buffer material will affect migration of redox-sensitive radionuclides. Therefore the authors have carried out electromigration experiments with source of iron ions supplied by anode corrosion of iron coupons attached to compacted bentonite. Authors tried to use plutonium in this experimental configuration to obtain the knowledge of migration behavior of actinides. Authors also used cesium as reference. The concentrations of iron and sodium showed nearly complementary distributions. It is expected that iron ion could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Concentration profiles of plutonium in bentonite grew as time supplying electric potential as long as 168 h. Plutonium migrated from the iron anode toward cathode as deeper than 1 mm of the interior of bentonite even in 48 h, though plutonium could not diffuse 1 mm for 2 years. On the other hand, profiles of cesium seemed to be controlled by ordinary diffusion because of large diffusion coefficient of cesium in bentonite as large as 10$^{-12}$ m$^{2}$/s. Drift of the cesium profile by electric potential gradient could be observed clearly after 240 h at individual experiment for cesium. Apparent dispersion coefficients of plutonium were calculated from the profiles and were as large as 10$^{-13}$ m$^{2}$/s. Since plutonium migration was accelerated by electric potential, plutonium chemical species would have positive charge and were estimated as PuOH$^{2+}$ or PuCl$^{2+}$ by the thermodynamic calculation. Thus this experiment can provide a diffusion field for cations under a reducing condition with ferrous ions in water-saturated bentonite.


2014 ◽  
Vol 400 (1) ◽  
pp. 521-529 ◽  
Author(s):  
Kazuto Namiki ◽  
Hidekazu Asano ◽  
Shinichi Takahashi ◽  
Tomoyuki Shimura ◽  
Ken Hirota

2006 ◽  
Vol 932 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Masaru Yamamoto ◽  
Yosuke Yamasaki ◽  
Yaohiro Inagaki ◽  
Tatsumi Arima

ABSTRACTCarbon steel overpack will be corroded by consuming oxygen introduced by repository construction after closure of repository and then will keep the reducing environment in the vicinity of repository. The migration of iron corrosion products through the buffer material will affect migration of redox-sensitive radionuclides. Therefore the authors have carried out electromigration experiments with source ofiron ions supplied by anode corrosion of iron coupons in compacted bentonite. However, their migration behavior was complex and difficult to explain. Thus, authors tried to use cesium, whose migration behavior is well known, inthis experimental configuration to obtain knowledge of the migration behavior of cations. The concentrationsof iron and sodium showed nearly complementary distributions. It is expected that iron ion could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. On the other hand, cesium profiles seemed to be controlled by ordinary diffusion. Drift of the cesium profile by electric potential gradient could be observed clearly only after 240 h. Apparent dispersion coefficients of cesium were calculated from the profiles and were in reasonable agreement with literature values of apparent diffusion coefficients. Thus this experiment can provide a diffusion field for cations under a reducing condition with ferrous ions in water-saturated bentonite. The effect of electro-osmotic flow on ion migration was negligibly small in this experiment because electro-osmotic flow was compensated by hydraulic pressure caused by the water content gradient developed in the specimen within 24h.


Author(s):  
Yukihisa Tanaka

In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside of the engineered barrier by anaerobic corrosion of metals used for containers, etc. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. In this study, a method for simulating gas migration through the compacted bentonite is proposed. The proposed method can analyze coupled hydrological-mechanical processes using the model of two-phase flow through deformable porous media. Validity of the proposed analytical method is examined by comparing gas migration test results with the calculated results, which revealed that the proposed method can simulate gas migration behavior through compacted bentonite with accuracy.


2020 ◽  
Vol 195 ◽  
pp. 04008
Author(s):  
Laura Gonzalez-Blanco ◽  
Enrique Romero ◽  
Paul Marschall

The initial conditions (dry density and saturation state), the stress state and its history, and the deformation undergone during gas migration, affect the gas transport processes in granular compacted bentonite. Additionally, the sample microstructure set on compaction has a significant influence since gas tends to flow through preferential pathways. This experimental study intends to shed light on the gas transport and their coupled hydro-mechanical interactions with particular emphasis in the changes of the pore and pathway network. Controlled volume-rate gas injection followed by shut-off and dissipation stages have been performed under oedometer conditions. The microstructure of the samples has been characterised with three different techniques before and after the gas injection tests: Mercury Intrusion Porosimetry (MIP), Field-Emission Scanning Electron Microscopy (FESEM) and X-ray Micro-Computed Tomography (μ-CT). The results show a coupling of the deformational behaviour during the gas flow, revealing an expansion of the samples upon the development of gas pathways, which have been detected with the microstructural techniques. The opening of these pressure-dependent and connected pathways plays a major role in gas migration.


2020 ◽  
Vol 57 (6) ◽  
pp. 921-932
Author(s):  
Hailong Wang ◽  
Takumi Shirakawabe ◽  
Hideo Komine ◽  
Daichi Ito ◽  
Takahiro Gotoh ◽  
...  

A testing procedure was proposed to study water movement in compacted bentonite and the development of swelling pressure (ps) when compacted bentonite specimens were wetted. In this procedure, a multi-ring mold was introduced for ps measurements, after which the specimen was sliced for X-ray diffraction to find movement of water in the interlayer space of montmorillonite. Results revealed a relation between four phases of ps development and evolution of four states of interlayer water molecule arrangement of montmorillonite (L): when ps reached its first peak in phase I, L moved from 1 row water arrangement (1w) to at least 2w; when ps decreased and re-increased in phases II or III, L moved from 2w to at least 3w; and when ps reached a steady state in phase IV, L = 3w. The w distribution in the compacted bentonite was also measured as water absorption time increased. Based on those results, the global water movement was estimated in terms of diffusivity (D) following a method employing Boltzmann transform. Results of comparisons implied that D calculated using this method matched experimental data well and the method was rather easily handled.


1999 ◽  
Vol 556 ◽  
Author(s):  
S. Kawakami ◽  
Y Yamanaka ◽  
K. Kato ◽  
H. Asano ◽  
H. Ueda

AbstractThe methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed.In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: pd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured.High density ( ρd: 1.4–2.0 Mg/m3) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3–15 MPa) and hydraulic conductivity (0.5–1.4×10−3 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable the handling method for emplacement of the monolithic bentonite.


Sign in / Sign up

Export Citation Format

Share Document