Two-person game model of long-term safeguards for a final repository for spent nuclear fuel

2020 ◽  
Vol 118 ◽  
pp. 103058 ◽  
Author(s):  
Heejae Ju ◽  
Il-Soon Hwang ◽  
Sungyeol Choi
2017 ◽  
Vol 153 ◽  
pp. 07035 ◽  
Author(s):  
Mikhail Ternovykh ◽  
Georgy Tikhomirov ◽  
Ivan Saldikov ◽  
Alexander Gerasimov

MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4163-4168
Author(s):  
E. González-Robles ◽  
M. Herm ◽  
V. Montoya ◽  
N. Müller ◽  
B. Kienzler ◽  
...  

ABSTRACTThe long-term behavior of the UO2 fuel matrix under conditions of the Belgian “Supercontainer design” was investigated by dissolution tests of high burn-up spent nuclear fuel (SNF) in high alkaline solution under 40 bar of (Ar + 8%H2) atmosphere. Four fragments of SNF, obtained from a pellet previously leached during two years, were exposed to young cement water with Ca (YCWCa) under 3.2 bar H2 partial pressure in four single/independent autoclave experiments for a period of 59, 182, 252 and 341 days, respectively. After a decrease of the concentration of dissolved 238U, which is associated with a reduction of U(VI) to U(IV), the concentration of 238U in solution is constant in the experiments running for 252 and 341 days. These observations indicate an inhibition of the matrix dissolution due to the presence of H2. A slight increase in the concentration of 90Sr and 137Cs in the aqueous solution indicates that there is still dissolution of the grain boundaries. These findings are similar to those reported for spent nuclear fuel corrosion in synthetic near neutral pH solutions.


Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 978-985 ◽  
Author(s):  
R. Poškas ◽  
V. Šimonis ◽  
H. Jouhara ◽  
P. Poškas

Author(s):  
Tobias Lindborg ◽  
Ulrik Kautsky ◽  
Lars Brydsten

The Swedish Nuclear Fuel and Waste Management Co., (SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site (figure 1). Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the landscape development, e.g. sea, lakes, agricultural areas, forest and wetlands (mire). The biosphere objects may switch from one ecosystem type to another during the modeled time period, from sea to lake, and from lake to mire and finally, some objects are transformed into agricultural area due to favorable farming characteristics.


2000 ◽  
Vol 663 ◽  
Author(s):  
Allan Hedin ◽  
Ulrik Kautsky ◽  
Lena Morén ◽  
Jan-Olof Selroos ◽  
Patrik Sellin ◽  
...  

ABSTRACTIn preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Company, SKB has carried out the long- term safety assessment SR 97, requested by the Swedish Government. The repository is of the KBS-3 type, where the fuel is placed in isolating copper canisters with a high-strength cast iron insert. The canisters are surrounded by bentonite clay in individual deposition holes at a depth of 500 m in granitic bedrock. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock.The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings, including climate, persist. The four other scenarios show the evolution if the repository contains a few initially defective canisters, in the event of climate change, in the event of earthquakes, and in the event of future inadvertent human intrusion.The principal conclusion of the assessment is that the prospects of building a safe deep repository for spent nuclear fuel in Swedish granitic bedrock are very good. The results of the assessment also serve as a basis for formulating requirements and preferences regarding the bedrock in site investigations, for designing a program for site investigations, for formulating functional requirements on the repository's barriers, and for prioritization of research.


1996 ◽  
Vol 465 ◽  
Author(s):  
C. W. Forsberg

ABSTRACTA new repository waste package (WP) concept for spent nuclear fuel (SNF) is being investigated. The WP uses depleted uranium (DU) to improve performance and reduce the uncertainties of geological disposal of SNF. The WP would be loaded with SNF. Void spaces would then be filled with DU (∼0.2 wt % 235U) dioxide (UO2) or DU silicate-glass beads.Fission products and actinides can not escape the SNF UO2 crystals until the UO2 dissolves or is transformed into other chemical species. After WP failure, the DU fill material slows dissolution by three mechanisms: (1) saturation of WP groundwater with DU and suppression of SNF dissolution, (2) maintenance of chemically reducing conditions in the WP that minimize SNF solubility by sacrificial oxidation of DU from the +4 valence state, and (3) evolution of DU to lower-density hydrated uranium silicates. The fill expansion minimizes water flow in the degraded WP. The DU also isotopically exchanges with SNF uranium as the SNF degrades to reduce long-term nuclear-criticality concerns.


2000 ◽  
Vol 88 (9-11) ◽  
Author(s):  
N. Marcos ◽  
J. Suksi ◽  
H. Ervanne ◽  
K. Rasilainen

Occurrence of natural U in fracture smectite (main mineral component of bentonite) was studied as an analogue to radionuclide behaviour in the near-field of spent nuclear fuel repository. Elevated U content (57 ppm) was observed in fracture smectite sampled from the surface of water-carrying fracture in granite pegmatite at a depth of 70 m. The current groundwater conditions are oxidising at the sampled point. The U-234/U-238 activity ratio (AR) measured in the bulk U and in its sequentially extracted phases, displays unusually low value (around 0.30). Low AR indicates preferential loss of the U-234 isotope from the system. Because the U-234 loss can also be seen in the Th-230/U-234 activity ratio (clearly over 1), the selective removal of the U-234 isotope must have taken place more recently than what is needed to equilibrate Th-230/U-234 pair (i.e. 350000 a). To explain the selective U-234 loss from the smectite we postulate that bulk U is in reduced +4 form and a considerable part of the U-234 isotope in easily leachable oxidised +6 form. This study suggests that the long-term chemical stability of the bulk U in the smectite is due to irreversible fixation of U in the reduced +4 form.


1998 ◽  
Vol 121 (2) ◽  
pp. 174-188 ◽  
Author(s):  
Bernd Grambow ◽  
Andreas Loida ◽  
Emmanuel Smailos

Sign in / Sign up

Export Citation Format

Share Document