Differential Scanning Calorimetry and Guinier Camera/High-Temperature X-Ray Diffraction Studies of the Oxygen Sublattice Phase Transition in the Yba2Cu3O7−x System

1987 ◽  
Vol 99 ◽  
Author(s):  
David S. Lee ◽  
Zezhong Fu ◽  
Egon Hellstern ◽  
William L. Johnson ◽  
Paul Pietrokowsky ◽  
...  

ABSTRACTWe have studied the phase transition of the oxygen sublattice in the YBa2Cu3O7−x system by Differential Scanning Calorimetry (DSC), Guinier Camera, and high temperature x-ray diffraction (ht-xrd) techniques. The transition was examined under different thermodynamic constraints (constant oxygen partial pressure and constant oxygen concentration) and for a range of oxygen partial pressures. The variation of the endothermic peak temperature with DSC scanning rate was used to deduce an activation energy for the transition. The average activation energy for the process is between 38.7–75.0 kcal/mole(l:2:3) [mole], depending on the thermodynamic constraint imposed on the system.Pressure versus concentration isotherms (P(C)) were used to determine the chemical potential of the oxygen in this system.

1990 ◽  
Vol 45 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
Klaus Praefcke ◽  
Bernd Kohne ◽  
Andreas Eckert ◽  
Joachim Hempel

Six S,S-dialkyl acetals 2a-f of inosose (1), tripodal in structure, have been synthesized, characterized and investigated by optical microscopy and differential scanning calorimetry (d.s.c.). The four S,S-acetals 2c-f with sufficiently long alkyl chains are thermotropic liquid crystalline; 2 e and 2 f are even dithermomesomorphic. Each of these four inosose derivatives 2c-f exhibits monotropically a most likely cubic mesophase (MI); in addition 2e and 2f show enantiotropically a hexagonal mesophase (Hx) with a non-covalent, supramolecular H-bridge architecture. Whereas the nature of the optically isotropic mesophase MI needs further clarification the stable high temperature mesophase Hx of 2 e and 2 f has been established by a miscibility test using a sugar S,S-dialkyl acetal also tripodal in structure and with a Hx phase proved by X-ray diffraction, but in contrast to 2 with an acyclic hydrophilic part. Similarities of structural features between the Hx-phases of 2e and 2f as well as of other thermotropic and lyotropic liquid crystal systems are discussed briefly.


1991 ◽  
Vol 69 (12) ◽  
pp. 863-867 ◽  
Author(s):  
D. A. Mannock ◽  
R. N. McElhaney

We have investigated the physical properties of a homologous series of synthetic, saturated 1,2-di-O-acyl-3-O-(β-D-galactopyranosyl)-sn-glycerols using calorimetry and X-ray diffraction. Unannealed aqueous dispersions of these compounds exhibit a lower temperature, moderately energetic, chain-melting (Lβ/Lα phase transition and a higher temperature, weakly energetic, bilayer/nonbilayer phase transition. On annealing below the Lβ/Lα phase transition, the Lβ phase converts to an LC phase, which may undergo a highly energetic LC/Lα or LC/HII phase transition at very high temperatures on reheating. The temperatures of these phase transitions are higher than those seen in the corresponding α- and β-D-glucosyl diacylglycerols. However, the Lβ/Lα and bilayer/nonbilayer phase transition temperatures of the β-D-galactosyl diacylglycerols are lower than those of the corresponding diacyl phosphatidylethanolamines. These observations are discussed in terms of the hydration and hydrogen bonding properties of their respective headgroups.Key words: differential scanning calorimetry, low-angle x-ray diffraction, glycolipids, galactolipids, lipid phase behaviour.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Mengfan Wang ◽  
Weiyu Cao

Simultaneous measurements of wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) were carried out to investigate the phase transition and melting behaviors of poly(butylene adipate) (PBA). Thermal expansion changes along the a and b axes of the β form unit cell are different from each other during the heating process. At the beginning of the β to αH (high-temperature α phase) phase transition, the β phase melts very fast, while the recrystallization of the αH phase is delayed and slowed. With the further increment of the temperature, the melting rate of the β phase slows down, while the recrystallization of the αH phase accelerates. The diffraction peak intensity ratios of the β(020):β(110) and αH(020):αH(110) diffraction peaks during the first heating process have similar value. However, the above value is different from the value of α(020):α(110) during the following melt-crystallization process. This difference comes from the different orientations of the crystal lattices of the α and αH(β) crystals to the substrate plane, which indicates that the αH phase inherits the orientation of the β phase during phase transition and the orientation of αH form crystals is different from the α form crystals that crystallized from the melt.


2012 ◽  
Vol 68 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Boris A. Zakharov ◽  
Evgeniy A. Losev ◽  
Boris A. Kolesov ◽  
Valeri A. Drebushchak ◽  
Elena V. Boldyreva

The occurrence of a first-order reversible phase transition in glycine–glutaric acid co-crystals at 220–230 K has been confirmed by three different techniques – single-crystal X-ray diffraction, polarized Raman spectroscopy and differential scanning calorimetry. The most interesting feature of this phase transition is that every second glutaric acid molecule changes its conformation, and this fact results in the space-group symmetry change from P21/c to P\bar 1. The topology of the hydrogen-bonded motifs remains almost the same and hydrogen bonds do not switch to other atoms, although the hydrogen bond lengths do change and some of the bonds become inequivalent.


RSC Advances ◽  
2021 ◽  
Vol 11 (63) ◽  
pp. 39813-39820
Author(s):  
Cong Luo ◽  
Jingke Pei ◽  
Wenyue Zhuo ◽  
Yanhua Niu ◽  
Guangxian Li

The deformation mechanism and phase transition behavior of polytetrafluoroethylene (PTFE) under stretching conditions (25, 50, 100 °C) were investigated by using differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), and X-ray diffraction (XRD).


1984 ◽  
Vol 28 ◽  
pp. 227-232
Author(s):  
T. G. Fawcett ◽  
C. E. Crowder ◽  
L. F. Whiting ◽  
J. C. Tou ◽  
W. F. Scott ◽  
...  

Over the past 25 years, numerous studies utilizing both X-ray diffraction (XRE) and differential scanning calorimetry (DSC) have been reported In the literature. Generally, conventional high-temperature X-ray data identifies solid-state transitions, then attempts to correlate them with thermal events observed by the calorimeter. Since changes occur in the sample during studies such as these, separate portions of the sample must be used for XRD and DSC experiments. When comparing results of the two experiments, questions arise concerning sample homogeniety as well as temperature and environmental differences. In fact, no conventional high-temperature X-ray diffraction instrument can give the precise control over temperature and heating rate available with a DSC, The problems of sample inhomogeneltles and Instrumental differences could be avoided if X-ray diffraction and DSC could be performed simultaneously on one sample.


Sign in / Sign up

Export Citation Format

Share Document