scholarly journals The indentation size effect of single-crystalline tungsten revisited

Author(s):  
Jin Wang ◽  
Tillmann Volz ◽  
Sabine M. Weygand ◽  
Ruth Schwaiger

AbstractIn this study, we have investigated the indentation size effect (ISE) of single crystalline tungsten with low defect density. As expected, the hardness shows a pronounced increase with decreasing indentation depth as well as a strong strain rate dependence. For penetration depths greater than about 300 nm, the ISE is well captured by the Nix–Gao model in the context of geometrically necessary dislocations. However, clear deviations from the model are observed in the low depth regime resulting in a bilinear effect. The hardness behavior in the low depth regime can be modeled assuming a non-uniform spacing of the geometrically necessary dislocations. We propose that the bilinear indentation size effect observed reflects the evolution of the geometrically necessary dislocation density. With increasing strain rate, the bilinear effect becomes less pronounced. This observation can be rationalized by the activation of different slip systems. Graphic abstract

2010 ◽  
Vol 662 ◽  
pp. 13-26 ◽  
Author(s):  
L.M. Brown

The flow of material out from under regions in compression must occur by the operation of many slip systems, which together produce rotational flow. Such flow requires the accumulation of geometrically necessary dislocations, and leads to the indentation size effect: smaller indents produce higher hardness, a component of the hardness being inversely proportional to the square-root of the indenter size. A pattern of flow in polycrystals which satisfies both continuity of normal stress and continuity of matter at boundaries can be achieved by rotational flow, and it leads to a grain-size effect. Under most circumstances, the flow stress has a component which is inversely proportional to the square-root of the grain size, the Hall-Petch law. The flow is accompanied by the build-up of internal stress which can be relieved by intercrystalline cracking, thereby limiting the cohesive strength of polycrystals. The relationship between these ideas and traditional views is briefly explained, and an analysis is given of recent experimental results.


Author(s):  
Nguyen Ngoc Vinh ◽  
Vu Quoc Anh ◽  
Hong Tien Thang

In this paper, the continuous stiffness measurement (CSM) indentation is employed to investigate fatigue mechanical properties of structural steel under cyclic loading. For this purpose, several representative analytical approaches were introduced to estimate the basic mechanical properties including Young’s modulus and indentation hardness from the characteristics of the loading/unloading curves. Several experiments including CSM nanoindentation, low-cycle fatigue experiment for four strain amplitude levels, optical microscope (OM), and transmission electron microscopy (TEM) examinations were conducted to observe the variation characteristics of mechanical properties at the microscale and their micro-mechanisms. The microstructural evolution of the specimens deformed by the low-cycle fatigue was observed using the OM and TEM examinations. The standard nanoindentation experiments were then performed at different strain rate levels to characterize the influences of strain rate indentation on hardness of the material. The micro-mechanisms established based on the microstructural evolution and strain gradient plasticity theory were introduced to be responsible for the variation of indentation hardness under cyclic loading. Finally, the indentation size effect (ISE) phenomenon in SS400 structural steel was investigated and explained through the strain gradient plasticity theory regarding geometrically necessary dislocations underneath the indenter tip. The experimental results can be used for practical designs as well as for understanding the fatigue behavior of SS400 structural steel. Keywords: cyclic loading; fatigue; nanoindentation; indentation size effect; strain rate sensitivity; structural steel.


2019 ◽  
Vol 35 (9) ◽  
pp. 1107-1113 ◽  
Author(s):  
Xinkai Ma ◽  
Fuguo Li ◽  
Zhankun Sun ◽  
Junhua Hou ◽  
Jinghui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document