scholarly journals Hydroelastic vibrations of the covers on water turbines with the upper ring of The guide vanes

2015 ◽  
Vol 6 (7(78)) ◽  
pp. 4
Author(s):  
Сергей Юрьевич Мисюра
Author(s):  
W. A. Lecher

In order to achieve the highest reliability in operation of large hydraulic turbo-machines, it is essential, amongst other things, to determine the magnitude not only of the static but also of the dynamic stresses under all operating conditions. The adjustable guide vanes of reversible turbine-pumps, for example, form a particularly critical component from the point of view of dynamic stresses, especially during pumping operations. This paper deals with the possibilities of predicting resonance conditions and of obtaining the magnitude of dynamic stresses in full-size machines on the basis of tests on model machines. The laws of similarity for forced and self-excited vibrations as well as vibrations in resonance are derived. It is shown that all kinds of hydraulically excited vibrations can be examined by model tests. It is permissible to carry out these measurements under reduced test head, provided that for the tested components different materials are used for the model and full-scale machine, and that the head ratio model-prototype is chosen accordingly. Suitable materials for model tests are recommended. The evaluation of the dynamic stresses for the full-size machine, based on the measured data of model tests, is shown for resonant and non-resonant conditions. Further, as an example, vibration investigations are described on the movable guide vanes of a pump-turbine, that is, using the derived laws of similarity.


1977 ◽  
Author(s):  
W. TABAKOFF ◽  
R. KOTWAL ◽  
A. HAMED
Keyword(s):  

2017 ◽  
Vol 17 (17) ◽  
pp. 1-10
Author(s):  
Mostafa Samy ◽  
Mohamed Metwally ◽  
Wael Elmayyah ◽  
Ibrahem Elsherif

2020 ◽  
Vol 13 (1) ◽  
pp. 3-15
Author(s):  
Arunachalam Vasanthanathan ◽  
Uthirakumar Siddharth ◽  
Manivannan Vignesh ◽  
Radhakrishnan Pravin

Background: Nature has always played a vital role in the evolution of life forms. The design of products in accordance with nature’s design, popularly known as biomimicry, had played a vital role in pushing the technology and product effectiveness to the next level. Humans have long sought to mimic not just the design, but also the methodology adopted by certain animals. For example, the walking technique of vertebrates has been effectively mimicked for a quadruped robot to make a system more efficient by consuming less power. Thus indirectly, nature acts as a driving factor in pushing technological growth. Methods: The principle objective of this paper is to provide an overview of popular bio mimicked products inspired by nature. This paper emphasizes a wide variety of products developed in the field of materials inspired by nature. Results: Wall-climbing robots, Sonar, X-ray imaging, Sandwich and Honeycomb structures are some of the popular products and designs inspired by nature. They have resulted in better designs, better products with improved efficiency and thus have proven to be better alternatives. Some products and designs such as Samara drone, Riblet surfaces, DSSCs, Biomimetic Drills and Water turbines have plenty of scopes to replace conventional products and designs. Conclusion: While plenty of products, structures and designs have successfully replaced older alternatives, there is still a large scope for biomimicry where it could potentially replace conventional products and designs to offer better efficiency.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 303
Author(s):  
Lingdi Tang ◽  
Shouqi Yuan ◽  
Yue Tang ◽  
Zhijun Gao

The impulse water turbine is a promising energy conversion device that can be used as mechanical power or a micro hydro generator, and its application can effectively ease the current energy crisis. This paper aims to clarify the mechanism of liquid acting on runner blades, the hydraulic performance, and energy conversion characteristics in the runner domain of an impulse water turbine with a splitter blade by using experimental tests and numerical simulations. The runner was divided into seven areas along the flow direction, and the power variation in the runner domain was analyzed to reflect its energy conversion characteristics. The obtained results indicate that the critical area of the runner for doing the work is in the front half of the blades, while the rear area of the blades does relatively little work and even consumes the mechanical energy of the runner to produce negative work. The high energy area is concentrated in the flow passage facing the nozzle. The energy is gradually evenly distributed from the runner inlet to the runner outlet, and the negative energy caused by flow separation with high probability is gradually reduced. The clarification of the energy conversion performance is of great significance to improve the design of impulse water turbines.


Sign in / Sign up

Export Citation Format

Share Document