scholarly journals Application of the NARX neural network for predicting a one-dimensional time series

2021 ◽  
Vol 5 (4 (113)) ◽  
pp. 12-19
Author(s):  
Tansaule Serikov ◽  
Ainur Zhetpisbayeva ◽  
Sharafat Mirzakulova ◽  
Kairatbek Zhetpisbayev ◽  
Zhanar Ibrayeva ◽  
...  

Time series data analysis and forecasting tool for studying the data on the use of network traffic is very important to provide acceptable and good quality network services, including network monitoring, resource management, and threat detection. More and more, the behavior of network traffic is described by the theory of deterministic chaos. The traffic of a modern network has a complex structure, an uneven rate of packet arrival for service by network devices. Predicting network traffic is still an important task, as forecast data provide the necessary information to solve the problem of managing network flows. Numerous studies of actually measured data confirm that they are nonstationary and their structure is multicomponent. This paper presents modeling using Nonlinear Autoregression Exogenous (NARX) algorithm for predicting network traffic datasets. NARX is one of the models that can be used to demonstrate non-linear systems, especially in modeling time series datasets. In other words, they called the categories of dynamic feedback networks covering several layers of the network. An artificial neural network (ANN) was developed, trained and tested using the LM learning algorithm (Levenberg-Macwardt). The initial data for the prediction is the actual measured network traffic of the packet rate. As a result of the study of the initial data, the best value of the smallest mean-square error MSE (Mean Squared Error) was obtained with the epoch value equal to 18. As for the regression R, its output ANN values in relation to the target for training, validation and testing were 0.97743. 0.9638 and 0.94907, respectively, with an overall regression value of 0.97134, which ensures that all datasets match exactly. Experimental results (MSE, R) have proven the method's ability to accurately estimate and predict network traffic

2019 ◽  
Vol 16 (10) ◽  
pp. 4059-4063
Author(s):  
Ge Li ◽  
Hu Jing ◽  
Chen Guangsheng

Based on the consideration of complementary advantages, different wavelet, fractal and statistical methods are integrated to complete the classification feature extraction of time series. Combined with the advantage of process neural networks that processing time-varying information, we propose a fusion classifier with process neural network oriented time series. Be taking advantage of the multi-fractal processing nonlinear feature of time series data classification, the strong adaptability of the wavelet technique for time series data and the effect of statistical features on the classification of time series data, we can achieve the classification feature extraction of time series. Additionally, using time-varying input characteristics of process neural networks, the pattern matching of timevarying input information and space-time aggregation operation is realized. The feature extraction of time series with the above three methods is fused to the distance calculation between time-varying inputs and cluster space in process neural networks. We provide the process neural network fusion to the learning algorithm and optimize the calculation process of the time series classifier. Finally, we report the performance of our classification method using Synthetic Control Charts data from the UCI dataset and illustrate the advantage and validity of the proposed method.


2021 ◽  
Vol 10 (2) ◽  
pp. 870-878
Author(s):  
Zainuddin Z. ◽  
P. Akhir E. A. ◽  
Hasan M. H.

Time series data often involves big size environment that lead to high dimensionality problem. Many industries are generating time series data that continuously update each second. The arising of machine learning may help in managing the data. It can forecast future instance while handling large data issues. Forecasting is related to predicting task of an upcoming event to avoid any circumstances happen in current environment. It helps those sectors such as production to foresee the state of machine in line with saving the cost from sudden breakdown as unplanned machine failure can disrupt the operation and loss up to millions. Thus, this paper offers a deep learning algorithm named recurrent neural network-gated recurrent unit (RNN-GRU) to forecast the state of machines producing the time series data in an oil and gas sector. RNN-GRU is an affiliation of recurrent neural network (RNN) that can control consecutive data due to the existence of update and reset gates. The gates decided on the necessary information to be kept in the memory. RNN-GRU is a simpler structure of long short-term memory (RNN-LSTM) with 87% of accuracy on prediction.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


2017 ◽  
Author(s):  
Anthony Szedlak ◽  
Spencer Sims ◽  
Nicholas Smith ◽  
Giovanni Paternostro ◽  
Carlo Piermarocchi

AbstractModern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield model, a recurrent neural network based on spin glasses, to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties of these cyclic Hopfield systems, including the ability of populations of simulated cells to recreate experimental expression data and the effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes which, when selectively inhibited by local external fields representing gene silencing compounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four kinases BRD4, MAPK1, NEK7, and YES1 in HeLa cells causes simulated cells to accumulate in the M phase. Finally, we suggest possible improvements and extensions to our model.Author SummaryCell cycle – the process in which a parent cell replicates its DNA and divides into two daughter cells – is an upregulated process in many forms of cancer. Identifying gene inhibition targets to regulate cell cycle is important to the development of effective therapies. Although modern high throughput techniques offer unprecedented resolution of the molecular details of biological processes like cell cycle, analyzing the vast quantities of the resulting experimental data and extracting actionable information remains a formidable task. Here, we create a dynamical model of the process of cell cycle using the Hopfield model (a type of recurrent neural network) and gene expression data from human cervical cancer cells and yeast cells. We find that the model recreates the oscillations observed in experimental data. Tuning the level of noise (representing the inherent randomness in gene expression and regulation) to the “edge of chaos” is crucial for the proper behavior of the system. We then use this model to identify potential gene targets for disrupting the process of cell cycle. This method could be applied to other time series data sets and used to predict the effects of untested targeted perturbations.


Sign in / Sign up

Export Citation Format

Share Document