scholarly journals Analysis of soil characteristics on expansive clay stabilization using shell ash

Author(s):  
Agus Tugas Sudjianto ◽  
Aji Suraji ◽  
Sugeng Hadi Susilo

Expansive clay is one of the problems in construction work. The soil has the characteristics of being easy to expand when exposed to water, causing a decrease in the strength value of the soil. The can be overcome by stabilizing the soil. The soil is formed from weathering and contains the mineral montmorillonite. The soil is very sensitive to moisture content, has a high shrinkage rate, thus interfering in construction work. Therefore, additional materials are needed to overcome the problem, one of which is soil stabilization. The study aimed to stabilize the expansive clay soil. This is done by analyzing the physical and mechanical properties of expansive clay with a shell ash mixture. Expansive clay is taken directly (undisturbed) or disturbed. Undisturbed soil is taken using a tube, so that the soil is not disturbed by outside air, while disturbed soil is taken using a shovel and then put into a sack container. Expansive clay stabilization method lies in adding the percentage of shell ash mixture (5 %, 10 %, 15 %, and 20 %). The soil, the initial moisture content (γd) of which has been determined, is mixed, then molded into a cylindrical shape. The mold was stored in a desiccator, then watered with 5 % water every day until the soil became saturated. Then, using a Proctor test, chemical tests (soil chemical test, soil mineral test), physical tests (soil moisture, Atterberg limit), and mechanical tests (unconfined compression test, compaction test, swelling test) were carried out. The results showed that the addition of an oyster shell ash stabilizing agent to expansive clay affected the physical and mechanical properties of the soil. The addition of shell ash can reduce soil moisture with various plasticity indexes. While the soil stress value decreased, the swelling of the soil increased significantly above the original soil.

Author(s):  
Xudong Hu ◽  
Jiazhen Gao ◽  
Mingtao Zhou ◽  
Songtao Peng ◽  
Wennian Xu ◽  
...  

The physical and mechanical properties of the ecological slope protection substrate will be affected by long-term variation of the meteorological condition, resulting in the stability of the substrate being reduced. So an artificial substrate of vegetation cement-soil was selected as the research object to prepare specimens with the different initial moisture content of 13%, 19%, 25%, 31%, 37%, and 43%. And a series of tests are conducted to investigate the evolution of the physical and mechanical properties under drying-wetting cycling conditions. Typical results of the vegetation cement-soil evolution can be divided into three stages: cement hydration stage, shrinkage stage, and stabilization stage. In terms of different initial moisture content, the shrinkage cracks number, cracks length, crack width, and cracks surface area are increased first and then stabilize with the increase of the number of drying-wetting cycles. In contrast, the cohesion and internal friction angle of the vegetation cement-soil is reduced with the increase of the number of cycles. Comprehensive analysis shows that the initial moisture content of vegetation cement soil ranges from 25% to 31% is the optimal choice to ensure substrate stability in production practice.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2013 ◽  
Vol 2 (6) ◽  
pp. 24
Author(s):  
A. S. Oyerinde ◽  
A. P. Olalusi

<p>The effect of moisture content on some physical and mechanical properties of two varieties of tigernuts (<em>Cyperus esculentus</em>) was investigated. These properties include: geometric dimensions, linear dimensions, 1000 tuber weight, bulk density, tuber size, sphericity, angle of repose, porosity, coefficient of static friction and compressive strength. The moisture content levels used were 20, 25, 30, 35 and 40% wet basis (wb), and the two tigernut varieties used were yellow and brown types. The linear dimension, geometric diameter, sphericity, 1000- tuber weight, bulk density and angle of repose in both varieties increased with increasing moisture content. The average length, width and thickness of the yellow variety increases more than the brown variety at the determined moisture contents. True density of the yellow variety increased while the brown variety decreased with increase in moisture content. The porosity of the yellow variety reduces with increase in moisture content from 45.95 at 20% mc to 42.4 at 40% mc, while the brown variety decreased from 42.72 at 20% mc to 30.77 at 40% moisture content. The yellow variety had bigger size tubers than the brown variety and this has serious implications in packing, handling and transportation issues.</p>


2016 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mohammad Hossein Nadian ◽  
Mohammad Hossein Abbaspour-fard

Abstract The effect of moisture content on some properties of two varieties (Meymeh and Maragheh) of Russian olives was studied. The physical and mechanical properties including: dimensions, geometric mean diameter, thousand mass, volume, sphericity, surface area, true and bulk densities, porosity, angle of repose, coefficient of friction, rupture force, and rupture energy. The changes of moisture content levels from 17% to 25% (w.b.) indicated a statistically significant effect on all studied physical properties, except bulk density for Russian olive fruits. Shearing force was applied to the fruit using a testing machine in double shear mode. Shear strength and shearing energy increased with increase of loading rate; however, they were higher in Meymeh variety than Maragheh variety. Therefore, the lowest loading rate, with up to about 10 mm/min is desirable to design a suitable pulverizing mill in the herbal medicine industries.


Sign in / Sign up

Export Citation Format

Share Document