scholarly journals ENDURANCE OF CARCASS TYPE POLYMER COMPOSITE MATERIALS AT DEFORMATION JOINTS OF BRIDGE STRUCTURE’S ELEMENTS

2020 ◽  
Vol 11 (3) ◽  
pp. 29-40
Author(s):  
B. A Bondarev ◽  
A. O Korneeva ◽  
O. O Korneev ◽  
A. G Saakyan ◽  
I. A Vostrikov

Numerous studies of road surfaces in the areas of deformation joints of bridges and overpasses have shown that the use of polymer composite materials can significantly reduce cracks and destruction. The cyclic durability of such materials prevents rutting in the zone of deformation seams, due to their damping properties. Effective building materials based on furfural acetone monomers (FAM) are used for the manufacture of tides that experience cyclic impacts of vehicle wheels. Therefore, tests were conducted on the endurance of FAM polymer concrete under the influence of cyclic application of load. Today cyclic and static durability of traditional FAM polymer concretes has been studied in detail. However, the carcass technology can improve the characteristics of polymer concrete, in particular, reduce shrinkage. These polymer concretes are produced in two stages. First, a carcass is created from the filler grains glued together, and then the voids are filled with a matrix composition. This article presents the results of endurance tests of polymer concrete made using carcass and traditional technologies, with the same set of raw materials. To determine the limit of endurance, we used the method of planning an experiment with the construction of an orthogonal-composite plan of the second order. The cycle asymmetry coefficient and loading level (as a percentage of the destruction load) were selected as variable factors affecting the cyclic durability. Lines of fatigue strength of traditional polymer concrete FAM and obtained by carcass manufacturing technology at different values of the cycle asymmetry coefficient are also constructed. The results of endurance tests under the influence of repeated application of load showed that the polymer composite material based on furfural acetone monomer, obtained by carcass technology, has an increased cyclic durability compared to traditional polymer concrete.

Author(s):  
Rudolf Gizelter

Development of manufacture of linear diene oligomers belonging to a liquid rubbers class with viscous liquids consistence allowed to create a new class of conglomerate polymer composite materials - rubber concrete (RubCon®). Rubber concrete is the advanced constructional material created for last years. It is polymer concrete with a unique set of physical-mechanical, chemical and technological properties which allow to obtain highly effective building structures and products on its basis.


2013 ◽  
Vol 416-417 ◽  
pp. 1712-1716
Author(s):  
Gang Li

Synthetic polymer material is made of polymer composite materials. Plastic, rubber, chemical fiber, building glue and paint are mainly involved in civil engineering. The basic components of the polymer materials are synthetic polymers, which is referred to as superpolymer. Materials of civil engineering made from the polymer or the traditional material modified the preparations are traditionally known as the chemical building materials. Chemical building materials is more and more widely applied in civil engineering, playing an important role in various decorations, waterproof, anticorrosive adhesive, as other civil engineering materials can not be replaced by. The English translation of critical polymer materials is vital, and the translation quality has a direct impact on people's understanding of it. In this paper, using the method of Nord's function plus loyalty translation theory, the author discusses the translation problems of polymer materials, and provides constructive and theoretical basis for translation practice.


2016 ◽  
Vol 2 (2) ◽  
pp. 37-42 ◽  
Author(s):  
E. N. Kablov ◽  
L. V. Chursova ◽  
A. N. Babin ◽  
R. R. Mukhametov ◽  
N. N. Panina

A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


Sign in / Sign up

Export Citation Format

Share Document