scholarly journals Third Order Low-Pass Filter Using Synthetic Immittance Elements with Current Conveyors

Author(s):  
Pavel Brandstetter ◽  
Lukas Klein
1998 ◽  
Vol 84 (1) ◽  
pp. 378-388 ◽  
Author(s):  
Ronald S. Platt ◽  
Eric A. Hajduk ◽  
Manuel Hulliger ◽  
Paul A. Easton

Platt, Ronald S., Eric A. Hajduk, Manuel Hulliger, and Paul A. Easton. A modified Bessel filter for amplitude demodulation of respiratory electromyograms. J. Appl. Physiol. 84(1): 378–388, 1998.—We studied a device that is commonly used for amplitude demodulation of respiratory muscle electromyograms (EMG). This device contains a rectifier and a low-pass filter called a modified third-order Paynter filter. We characterized this filter and found that it has good transient characteristics that suit its task as an EMG demodulator, but it has poor high-frequency attenuation that passes interfering, higher frequency components to the output waveform. Therefore, we designed and constructed a new filter with transient characteristics that are comparable to those of the modified Paynter filter but with superior high-frequency attenuation. This new filter is a modified seventh-order Bessel filter. We also identified a simple technique to convert an existing modified Paynter filter back to an original Paynter filter. The original Paynter filter has a wider pass band than the modified Paynter filter but superior stop-band attenuation.


2017 ◽  
Vol 870 ◽  
pp. 173-178 ◽  
Author(s):  
Ru Qin ◽  
Ping Cai ◽  
Ding Ding Zhao ◽  
Yi Gao

When a dynamic balancing measuring system is equipped with velocity sensor as its vibration pick-up, the output signal of the sensor is proportional to the third power of rotating speed of the balancing operation. Generally a third order low-pass filter circuit is often used to eliminate the influence of rotating speed and suppress the high frequency interference as well. However, the frequency response of third order low-pass filter circuit can’t compensate completely for the response characteristic of the vibration system of balancing machine, which then causes measuring error. So, as a general purpose hard bearing dynamic balancing machine being suitable for a wide speed range, frequency compensation must be conducted. The approach of frequency compensation is classified into two broad types: hardware and software compensation. This paper conducts further research on these two methods to improve the accuracy of the measuring system and proves the accuracy and effectiveness of the two methods by signal simulation and field experiments.


2021 ◽  
Vol 42 (2) ◽  
pp. 227
Author(s):  
Arthur de Abreu Romão ◽  
Newton Da Silva

Distributed generation systems, based on renewable energy sources, are typically connected to the main grid by a voltage-source inverter with a low-pass filter. The need for improved efficiency led to the use of third order low-pass filters, such as the LCL configuration, which has resonant behavior. In order to meet energy quality requirements and ensure the systems stability it is necessary to suppress the LCL filters resonance through damping techniques. Therefore, this paper presents an overview of some damping strategies found in literature and its design procedure, applied to a simulated single-phase grid-tied inverter. The comparison of each presented damping methodology characteristics is described, with analysis of advantages and drawbacks for each case.


2021 ◽  
Author(s):  
Ashu Soni ◽  
Maneesha Gupta

Abstract This paper proposes the design and analysis of (2+α) order low pass Bessel filter using different optimization techniques. The coefficients of the proposed filter are found out by minimizing the error between transfer functions of (2+α) order low pass filter and third-order Bessel approximation using simulated annealing (SA), interior search algorithm (ISA), and nonlinear least square (NLS) optimization techniques. The best optimization technique based on the error in gain, cut off frequency, roll-off, passband, stopband, and phase is chosen for designing the proposed filter. The stability analysis of the proposed filter has also been done in W-plane. The simulated responses of the best optimized proposed filter are obtained using the FOMCON toolbox of MATLAB and SPICE. The circuit realization of 2.5 order low pass Bessel filter is done using two DVCCs (differential voltage current conveyors), one generalized impedance converter (GIC) based inductor, and one fractional capacitor. The proposed filter is implemented for the cut off frequency of 10 kHz using a wideband fractional capacitor. Monte Carlo noise analyses are also performed for the proposed filter. The MATLAB and SPICE results are shown in good agreement.


Sign in / Sign up

Export Citation Format

Share Document