scholarly journals Exploiting NOMA in D2D Assisted Full-duplex Cooperative Relaying

Author(s):  
Tu-Trinh Thi Nguyen ◽  
Dinh-Thuan Do
2021 ◽  
pp. 101447
Author(s):  
Meiling Li ◽  
Shuaibo Huang ◽  
Lili Tian ◽  
Omar Alhussein ◽  
Sami Muhaidat

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1482 ◽  
Author(s):  
Nikolaos Nomikos ◽  
Panagiotis Trakadas ◽  
Antonios Hatziefremidis ◽  
Voliotis

The efficient deployment of fifth generation and beyond networks relies upon the seamless combination of recently introduced transmission techniques. Furthermore, as multiple network nodes exist in dense wireless topologies, low-complexity implementation should be promoted. In this work, several wireless communication techniques are considered for improving the sum-rate performance of cooperative relaying non-orthogonal multiple access (NOMA) networks. For this purpose, an opportunistic relay selection algorithm is developed, employing single-antenna relays to achieve full-duplex operation by adopting the successive relaying technique. In addition, as relays are equipped with buffers, flexible half-duplex transmission can be performed when packets reside in the buffers. The proposed buffer-aided and successive single-antenna (BASSA-NOMA) algorithm is presented in detail and its operation and practical implementation aspects are thoroughly analyzed. Comparisons with other relevant algorithms illustrate significant performance gains when BASSA-NOMA is employed without incurring high implementation complexity.


2020 ◽  
Vol 38 ◽  
pp. 100914
Author(s):  
Mohammed Belal Uddin ◽  
Md. Fazlul Kader ◽  
Soo Young Shin

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 261 ◽  
Author(s):  
Khaled Eshteiwi ◽  
Georges Kaddoum ◽  
M. S. Alam

We analyze the ergodic capacity of a dual-hop full duplex amplify-and-forward (AF) vehicle-to-vehicle (V2V) cooperative relaying system over Nakagami-m fading channels. In this context, the impacts of self-interference (SI) at the relay and co-channel interference (CCI) at the destination are taken into account in this analysis. Precisely, based on the analysis of the moment generating function (MGF) of the signal-to-interference-plus-noise ratio (SINR), new exact and lower bound expressions for the ergodic capacity are derived. The ergodic capacity upper bound is also derived based on the asymptotic outage probability of the approximated SINR. Monte-Carlo simulation results are presented to corroborate the derived analytical results. Our results show the significant impact of the considered interferences on the system performance. It is shown that the ergodic capacity is degraded when the average SI at the relay and/or the average CCI at the destination is increased. This highlights the importance of taking these phenomena into account in the performance evaluation in order to assess the practical limit of full duplex relaying (FDR) cooperative wireless communications. Interestingly, it is also observed that FDR with SI and CCI still shows a higher ergodic capacity than the interference-free half duplex relaying, especially at medium to high signal-to-noise ratios (SNRs).


2013 ◽  
Vol 49 (4) ◽  
pp. 300-302 ◽  
Author(s):  
V. Stanković ◽  
P. Spalević

Author(s):  
Hoang-Phuong Van ◽  
Hoang-Sy Nguyen

Most of the existing studies on energy harvesting (EH) cooperative relaying networks are conducted for the outdoor environments which are mainly characterized by Rayleigh fading channels. However, there are not as many studies that consider the indoor environments whereas the state-of-the-art internet of things (IoT) and smart city applications are built upon. Thus, in this paper, we analyze a namely hybrid time-power splitting relaying (HTPSR) protocol in a full-duplex (FD) decode-and-forward (DF) battery-energized relaying network in indoor scenarios modelled by the unpopular log-normal fading channels. Firstly, we formulate the analytical expression of the outage probability (OP) then the system throughput. Accordingly, we simulate the derived expressions with the Monte Carlo method. It is worth mentioning that in our work, the simulation and the theory agree well with each other. From the simulation results, we know how to compromise either the power splitting (PS) or the time splitting (TS) factors for optimizing the system performance.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 106 ◽  
Author(s):  
Phu Tran Tin ◽  
Bach Hoang Dinh ◽  
Tan N. Nguyen ◽  
Duy Hung Ha ◽  
Tran Thanh Trang

In this research, we proposed and investigated the physical layer system called the full-duplex (FD) power beacon-assisted (PB) energy harvesting (EH) relaying cooperative network. The system model has one PB node, one destination (D), one source (S), and one relay (R) node. We investigated the system performance in terms of outage probability (OP) and system throughput (ST) with the power-splitting (PS) protocol in both delay-tolerant (DTT) and delay-limited (DLT) transmission modes. Moreover, the optimal power splitting (PS) factor in both DDT and DLT modes is proposed and derived. Finally, the mathematical closed-form expressions of the OP and ST are derived by using the Monte Carlo simulation with the help of MATLAB software. From the results, it can be observed that the analytical values and simulation values are the same in the effect of the main system parameters.


Sign in / Sign up

Export Citation Format

Share Document