scholarly journals Relationship between AdeABC Efflux Pump Genes and Carbapenem in Multidrug-resistant Acinetobacter baumannii

2021 ◽  
Vol 27 (2) ◽  
pp. 59-68
Author(s):  
Yeongdon Ju ◽  
Yoo-Jeong Kim ◽  
Chulhun L. Chang ◽  
Go-Eun Choi ◽  
Kyung-Yae Hyun
2020 ◽  
Vol 60 (6) ◽  
pp. 494-507 ◽  
Author(s):  
Reyhaneh Behdad ◽  
Minoo Pargol ◽  
Amir Mirzaie ◽  
Shohreh Zare Karizi ◽  
Hassan Noorbazargan ◽  
...  

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACTAcinetobacter baumanniihas emerged as an important multidrug-resistant nosocomial pathogen. In previous work, we identified a putative MFS transporter, AU097_RS17040, involved in the pathogenicity ofA. baumannii(M. Pérez-Varela, J. Corral, J. A. Vallejo, S. Rumbo-Feal, G. Bou, J. Aranda, and J. Barbé, Infect Immun 85:e00327-17, 2017,https://doi.org/10.1128/IAI.00327-17). In this study, we analyzed the susceptibility to diverse antimicrobial agents ofA. baumanniicells defective in this transporter, referred to as AbaQ. Our results showed that AbaQ is mainly involved in the extrusion of quinolone-type drugs inA. baumannii.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 119 ◽  
Author(s):  
Carole Ayoub Moubareck ◽  
Dalal Hammoudi Halat

Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.


Author(s):  
Piotr Wieczorek ◽  
Paweł Sacha ◽  
Tomasz Hauschild ◽  
Marcin Zórawski ◽  
Małgorzata Krawczyk ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1079
Author(s):  
Patrik Mlynarcik ◽  
Monika Dolejska ◽  
Iva Vagnerova ◽  
Jana Petrzelova ◽  
Iva Sukkar ◽  
...  

Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198061 ◽  
Author(s):  
Chao Hu ◽  
Yujun Li ◽  
Ziwen Zhao ◽  
Shuquan Wei ◽  
Zhuxiang Zhao ◽  
...  

Author(s):  
Peechanika Chopjitt ◽  
Anusak Kerdsin ◽  
Dan Takeuchi ◽  
Rujirat Hatrongjit ◽  
Parichart Boueroy ◽  
...  

Background:: Acinetobacter baumannii is recognized as a majority opportunistic nosocomial pathogen and caus-ing hospital-acquired infection worldwide. The increasing prevalence of extensively drug-resistant Acinetobacter baumannii (XDRAB) has become a rising concern in healthcare facilities and has impeded public health due to limitation of therapeutic options and are associated with high morbidity and mortality as well as longer hospitalization. Whole-genome sequencing of highly multidrug resistant A. baumannii will increase understanding of resistant mechanisms, the emergence of novel re-sistance, genetic relationships among the isolates, source tracking, and treatment decisions in selected patients. Objective:: This study revealed the genomic analysis to explore blaOXA-23 harboring XDRAB isolates in Thailand. Methods:: Whole-genome sequencing of the two XDRAB isolates was carried out on a HiSeq2000 Illumina platform and susceptibility on antimicrobials was conducted. Results:: Both isolates revealed sequence types of international, clone II-carrying, multiple antimicrobial-resistant genes—ST195 and ST451. They were resistant to antimicrobial agents in all drug classes tested for Acinetobacter spp. They carried 18 antimicrobial-resistant genes comprising of 4 -lactamase genes (blaOXA-23, blaOXA-66, blaTEM-1D, blaADC-25), 4 aminogly-coside-resistant genes (armA, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id), 3 macrolide-resistant genes (amvA, mphE, msrE), 1 sulfon-amide-resistant gene (sul-2), 2 tetracycline-resistant genes (tetB, tetR), 1 resistant-nodulation-cell division (RND) antibiotic efflux pump gene cluster, 2 major facilitator superfamily (MFS) antibiotic efflux pump genes (abaF, abaQ), and 1 small multidrug-resistant (SMR) antibiotic efflux pump gene (abeS). Mutation of gyrA (S81L) occurred in both isolates. Conclusions:: Whole-genome sequencing revealed both blaOXA-23 harboring XDRAB isolates were clustered under interna-tional clone II with difference STs and carrying multiple antimicrobial-resistant genes conferred their resistance to antimi-crobial agents. Inactivation of antimicrobials and target modification by enzymes, and pumping antibiotics by efflux pump are mainly resistance mechanism of the XDRAB in this study.


2011 ◽  
Vol 55 (3) ◽  
pp. 1285-1286 ◽  
Author(s):  
Ignasi Roca ◽  
Paula Espinal ◽  
Sara Martí ◽  
Jordi Vila

ABSTRACTNon-Acinetobacter baumanniispp. are emerging among clinicalAcinetobacterisolates causing nosocomial infections, and some (such as genomospecies 13TU) appear to be multidrug resistant. The prevalence of non-Acinetobacter baumanniispp. in the hospital setting is likely understated due to poor identification techniques. We report the first identification of an AdeABC-type efflux pump in anAcinetobactergenomospecies 13TU clinical isolate, its contribution to multidrug resistance, and the coexistence of three Ade-type efflux pumps in this strain.


Sign in / Sign up

Export Citation Format

Share Document