scholarly journals Calculation of loading-induced tendon slip in beams prestressed with external tendons. Part II: Numerical analysis

2006 ◽  
Vol 28 (4) ◽  
pp. 207-218
Author(s):  
Bui Khac Diep ◽  
Lam Huu Quang

In this paper, a computing method for the tendon slip based on the force equilibrium condition at deviators was proposed. The proposed method for the evaluation of tendon slip was presented in a general form by taking into account all possibilities of tendon slip at deviators, and several factors found to be important that affect the tendon slip, such as effects of the slippage at two adjacent deviators, friction, change of tendon angles during the applied load, etc. The validation of the proposed method was verified by comparing with the experimental results. The predicted results showed a close agreement with the experimental observation.

2004 ◽  
Vol 50 (6) ◽  
pp. 53-60 ◽  
Author(s):  
B.K. Rajbhandari ◽  
A.P. Annachhatre

To study the response of nitrifying biofilm to inhibitory shock loads, a lab-scale nitrifying biofilm reactor was operated in ambient conditions. Shock loads of various concentrations of inhibitory compound were applied to the biofilm. Aniline was used as an inhibitory compound. The experimental results were utilized to develop a model for predicting the variation of effluent nitrate concentration from the biofilm reactor for given shock loads of aniline concentration and exposure time both in exposure as well as in recovery phase. Close agreement between model and experimental observation of bulk aniline concentration and effluent nitrate concentration was obtained which indicates the usefulness of the model to estimate bulk aniline concentration and to predict the response of inhibitory shock loads on nitrifying biofilm.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


Author(s):  
Yiqi Cheng ◽  
Xinhua Wang ◽  
Waheed Ur Rehman ◽  
Tao Sun ◽  
Hasan Shahzad ◽  
...  

This study presents a novel cylindrical vane pump based on the traditional working principle. The efficiency of the cylindrical vane pump was verified by experimental validation and numerical analysis. Numerical analysis, such as kinematics analysis, was performed in Pro/Mechanism and unsteady flow-field analysis was performed using ANSYS FLUENT. The stator surface equations were derived using the geometric theory of the applied spatial triangulation function. A three-dimensional model of the cylindrical vane pump was established with the help of MATLAB and Pro/E. The kinematic analysis helped in developing kinematic equations for cylindrical vane pumps and proved the effectiveness of the structural design. The maximum inaccuracy error of the computational fluid dynamics (CFD) model was 5.7% compared with the experimental results, and the CFD results show that the structure of the pump was reasonable. An experimental test bench was developed, and the results were in excellent agreement with the numerical results of CFD. The experimental results show that the cylindrical vane pump satisfied the three-element design of a positive-displacement pump and the trend of changes in efficiency was the same for all types of efficiency under different operating conditions. Furthermore, the volumetric efficiency presented a nonlinear positive correlation with increased rotational velocity, the mechanical efficiency showed a nonlinear negative correlation, and the total efficiency first increased and then decreased. When the rotational velocity was 1.33[Formula: see text] and the discharge pressure was 0.68[Formula: see text], the total efficiency reached its maximum value.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2021 ◽  
Author(s):  
Sankalp Gour ◽  
Deepu Kumar Singh ◽  
Deepak Kumar ◽  
Vinod Yadav

Abstract The present study deals with the constitutive modeling for the mechanical behavior of rubber with filler particles. An analytical model is developed to predict the mechanical properties of rubber with added filler particles based on experimental observation. To develop the same, a continuum mechanics-based hyperelasticity theory is utilized. The model is validated with the experimental results of the chloroprene and nitrile butadiene rubbers filled with different volume fractions of carbon black and carbon nanoparticles, respectively. The findings of the model agree well with the experimental results. In general, the developed model will be helpful to the materialist community working in characterizing the material behavior of tires and other rubber-like materials.


2019 ◽  
Vol 8 (4) ◽  
pp. 12722-12728

Artificial Ground Freezing techniques eliminate the need for structural supports during the course of an excavation, as frozen ground is solid and waterproof. At present, it is adopted as an effective way to deal with various construction ground control challenges such as the mitigation of seepage infiltration into tunnels and shaft excavations; or ground strengthening for excavation. In-depth knowledge of the frozen soil characteristics through experiments and the development of suitable constitutive models that suit the geological conditions of our country are necessary to predict the strength and behavior of the frozen soils. Numerical analysis of frozen soil can be used for mass works like tunneling which cannot be experimentally verified. This paper presents a validation of experimental results obtained from laboratory setup and soil freezing system for C-Phi soil. The main aim is to compare numerical and experimental results and hence obtaining the shear strength parameter of the soil, similar to the conventional triaxial test setup. To perform numerical analysis Finite element tool ANSYS 19 is used. Soil model is made in ANSYS 19 and required loads are inputted to performed the analysis similar to the experimental method. The result obtained from experimental test setup and numerical analysis was verified and compared and it was found that values of numerical results lies closer to experimental results


2010 ◽  
Vol 95 (2) ◽  
pp. 380-397 ◽  
Author(s):  
Joep P. J. Schmitz ◽  
Natal A. W. Van Riel ◽  
Klaas Nicolay ◽  
Peter A. J. Hilbers ◽  
Jeroen A. L. Jeneson

Sign in / Sign up

Export Citation Format

Share Document