scholarly journals Orthogonal-based wavelet analysis of wind turbulence and correlation between turbulence and forces

2007 ◽  
Vol 29 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Le Thai Hoa ◽  
Nguyen Dong Anh

Recent models of wind turbulence and turbulence-force relation as well still contain uncertainties. Further studies on them are needed to gain the better knowledge to refine the existing problems from analytical computations to wind tunnel's physical simulations in the wind engineering. The continuous and discrete wavelet transforms have been applied as powerful transformation tools to represent time series into the time-frequency localization. This paper will apply the orthogonal-based wavelet decomposition to investigate the intermittency of the turbulence and to detect the turbulence-force correlation in the both temporal-spectral information using proposed cross energy of wavelet decompositions. Analyzing data have been obtained by physical measurements on model from the wind tunnel tests.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Timur Düzenli ◽  
Nalan Özkurt

The performance of wavelet transform-based features for the speech/music discrimination task has been investigated. In order to extract wavelet domain features, discrete and complex orthogonal wavelet transforms have been used. The performance of the proposed feature set has been compared with a feature set constructed from the most common time, frequency and cepstral domain features such as number of zero crossings, spectral centroid, spectral flux, and Mel cepstral coefficients. The artificial neural networks have been used as classification tool. The principal component analysis has been applied to eliminate the correlated features before the classification stage. For discrete wavelet transform, considering the number of vanishing moments and orthogonality, the best performance is obtained with Daubechies8 wavelet among the other members of the Daubechies family. The dual tree wavelet transform has also demonstrated a successful performance both in terms of accuracy and time consumption. Finally, a real-time discrimination system has been implemented using the Daubhecies8 wavelet which has the best accuracy.


Author(s):  
Christos T. Yiakopoulos ◽  
Ioannis A. Antoniadis

Abstract Envelope detection or demodulation methods for bearing vibration response signals have been established as a dominant analysis method for bearing fault diagnosis, since they can separate the useful part of the signal from its redundant contents. A new effective demodulation method is proposed, based on the Discrete Wavelet Transform (DWT). The method fully exploits the underlying physical concepts of the modulation mechanism, present in the vibration response of faulty bearings, using the excellent time-frequency localization properties of the wavelet analysis. Two key elements, resulting to the successful implementation of the method, are its practical independence from the choice of the specific wavelet family to be used and the limited number of the wavelet levels, that are required for its practical application. Experimental results and industrial measurements for three different types of bearing faults, confirm the validity of the overall approach.


Author(s):  
Rodrigo Capobianco Guido ◽  
Fernando Pedroso ◽  
André Furlan ◽  
Rodrigo Colnago Contreras ◽  
Luiz Gustavo Caobianco ◽  
...  

Wavelets have been placed at the forefront of scientific researches involving signal processing, applied mathematics, pattern recognition and related fields. Nevertheless, as we have observed, students and young researchers still make mistakes when referring to one of the most relevant tools for time–frequency signal analysis. Thus, this correspondence clarifies the terminologies and specific roles of four types of wavelet transforms: the continuous wavelet transform (CWT), the discrete wavelet transform (DWT), the discrete-time wavelet transform (DTWT) and the stationary discrete-time wavelet transform (SDTWT). We believe that, after reading this correspondence, readers will be able to correctly refer to, and identify, the most appropriate type of wavelet transform for a certain application, selecting relevant and accurate material for subsequent investigation.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sameer A. Dawood ◽  
F. Malek ◽  
M. S. Anuar ◽  
Suha Q. Hadi

Discrete multiwavelet critical-sampling transform (DMWCST) has been proposed instead of fast Fourier transform (FFT) in the realization of the orthogonal frequency division multiplexing (OFDM) system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM) was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM) and the traditional FFT-based OFDM (FFT-OFDM) over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.


2003 ◽  
Vol 125 (3) ◽  
pp. 274-281 ◽  
Author(s):  
Yuji Ohue ◽  
Akira Yoshida

The aim of this study is to propose a new evaluation method of gear dynamics using the continuous and discrete wavelet transforms. The wavelet transform (WT) is a method for the time-frequency analysis of signals. In order to evaluate the difference in the gear dynamics due to the gear materials, which are sintered and steel ones, the dynamic characteristics of gears were measured using a power circulating gear testing machine. The gear dynamics were analyzed in a time-frequency domain by the continuous and discrete WTs. The new evaluation method using the WTs proposed in this paper was more useful compared with the conventional one to investigate the damping characteristic and the dynamic condition of the gear equipment.


Author(s):  
Yuji Ohue ◽  
Akira Yoshida

Abstract The aim of this study is to propose a new evaluation method of gear dynamics using continuos and discrete wavelet transforms. The Wavelet Transform (WT) is a method for the time-frequency analysis of signals. In order to evaluate the difference in the gear dynamics due to the gear material, the dynamic characteristics of gear were measured using a power circulating gear testing machine. The gear dynamics were analyzed in a time-frequency domain by the continuos and discrete WTs. The new evaluation method using the WTs proposed in this paper was very useful compared with the conventional one to investigate the damping characteristic and the dynamic condition of the gear equipment.


Author(s):  
Eirik Berge

AbstractWe investigate the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })\subset L^{2}(G)$$ W g ( H π ) ⊂ L 2 ( G ) arising from square integrable representations $$\pi :G \rightarrow \mathcal {U}(\mathcal {H}_{\pi })$$ π : G → U ( H π ) of a locally compact group G. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong restrictions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time–frequency analysis, this problem turns out to be equivalent to the HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })$$ W g ( H π ) of a locally compact group G collectively exhaust the ambient space $$L^{2}(G)$$ L 2 ( G ) . We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 381-395
Author(s):  
Pavel Morozov ◽  
Tatyana Sitnikova ◽  
Gary Churchill ◽  
Francisco José Ayala ◽  
Andrey Rzhetsky

Abstract We propose models for describing replacement rate variation in genes and proteins, in which the profile of relative replacement rates along the length of a given sequence is defined as a function of the site number. We consider here two types of functions, one derived from the cosine Fourier series, and the other from discrete wavelet transforms. The number of parameters used for characterizing the substitution rates along the sequences can be flexibly changed and in their most parameter-rich versions, both Fourier and wavelet models become equivalent to the unrestricted-rates model, in which each site of a sequence alignment evolves at a unique rate. When applied to a few real data sets, the new models appeared to fit data better than the discrete gamma model when compared with the Akaike information criterion and the likelihood-ratio test, although the parametric bootstrap version of the Cox test performed for one of the data sets indicated that the difference in likelihoods between the two models is not significant. The new models are applicable to testing biological hypotheses such as the statistical identity of rate variation profiles among homologous protein families. These models are also useful for determining regions in genes and proteins that evolve significantly faster or slower than the sequence average. We illustrate the application of the new method by analyzing human immunoglobulin and Drosophilid alcohol dehydrogenase sequences.


Sign in / Sign up

Export Citation Format

Share Document