scholarly journals Asessment of genetic diversity of Vietnam rice by ssr markers to identify cross combinations for development of drought tolerant rice cultivars

2013 ◽  
Vol 35 (1) ◽  
Author(s):  
Vu Thi Bich Huyen ◽  
Le Thi Bich Thuy ◽  
Nguyen Anh Dung ◽  
Hoang Ba Tien ◽  
Nguyen Duc Thanh
Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


Author(s):  
Nishi Mishra ◽  
M. K. Tripathi ◽  
Niraj Tripathi ◽  
Sushma Tiwari ◽  
Neha Gupta ◽  
...  

Aim: Soybean is well-thought-out to be a major crop owing to its significant involvement as vegetable oil and protein in human diet. However, inopportunely, its production has been melodramatically declined attributable to the commonness of drought related stress. Study Design: During the present study a total of 53 soybean genotypes were selected. For molecular diversity analysis as well as validation total 12 SSR markers were used. Molecular screening of soybean genotypes was done to determine the efficiency of available markers in genetic diversity analysis as well as their validation on the basis of their association with drought tolerance gene. Place and Duration of the Study: The present study was conducted at Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Gwalior, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, M.P., India during the year 2018 - 2019. Methodology: Template DNA of all 53 selected soybean genotypes extracted for molecular screening. The current investigation has been accomplished to validate the available SSR markers with their efficiency in genetic diversity analysis in a set of soybean genotypes. Results: Among applied drought tolerance gene-linked 12 SSR molecular markers, the highest genetic diversity (0.6629) was noticed in Satt520 while lowest (0.0370) was in Satt557 with an average of 0. 3746.While, the highest PIC value was 0.5887 prearranged by Satt520 and lowest 0.0363 by Satt557 with the mean worth of 0.3063. Conclusion: Dendrogram constructed on the basis of banding profile of employed markers was able to discriminate some putative drought tolerant genotypes i.e., JS97-52, JS95-60 from rest of the genotypes. The results of the present examination may donate towards enhancement of soybean genotypes to bread drought tolerant varieties.


2007 ◽  
Vol 57 (4) ◽  
pp. 263-270 ◽  
Author(s):  
Victoria C. Lapitan ◽  
Darshan S. Brar ◽  
Toshinori Abe ◽  
Edilberto D. Redoña

The Nucleus ◽  
2015 ◽  
Vol 59 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Shah Md. Mahbub Alam ◽  
Sadia Siddika ◽  
Md. Enamul Haque ◽  
Md. Asadul Islam ◽  
Ashutosh Mukherjee ◽  
...  

Crop Science ◽  
2007 ◽  
Vol 47 (2) ◽  
pp. 853-858 ◽  
Author(s):  
L. E. Giarrocco ◽  
M. A. Marassi ◽  
G. L. Salerno

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Renuka Sharma ◽  
Satish Kumar ◽  
Sanjay Kumar Singh ◽  
Pradeep Sharma ◽  
Gyanendra Pratap Singh

Sign in / Sign up

Export Citation Format

Share Document