scholarly journals The impact of intraspecific competition on tree growth in planted Korean pine forest

2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Nguyen Thanh Tuan ◽  
Vu Dinh Duy ◽  
Shen H-L

The aim of this study was to explore the correlation of competition indices (CIs) on individual tree growth for Korean pine (Pinus koraiensis) plantation using partial correlation analysis and generalized linear models. The data were collected from 15 permanent plots in Mengjiagang forestry farm, Northeast China. The results showed that the distance dependent CIs have a higher predictive capacity for individual growth of pine trees. The control index of competitive trees number (CI1) combined with the selection fixed competitor trees (M2) was found to be the most well correlated competition measure with five - years diameter increment. Thus, the competition index (CI1- M2) was recommended for developing individual tree growth models. The subject tree diameter at breast height, crown width, height to crown base, tree volume and basal area all showed a significantly linear correlation with tree competition intensity (P < 0,05). Diameter at breast height, crown width, tree volume and basal area all decreased with increasing competition intensity, whereas the height to crown base increased. There was no significant relationship between competition intensity and tree height (P > 0,05). The optimal model of predicting individual growth with logarithm of diameter at breast height and CIs as the independent variables due to the best fitting performance. This results also showed considerable improvement in predicting individual tree periodic growth when including competition indices that the mean absolute error is reduced in the range of 22−25%. 

2005 ◽  
Vol 35 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Kjell Karlsson ◽  
Lennart Norell

The probability that an individual tree will remain in even-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinning programmes was modelled, using data from a thinning experiment established in 25 localities in southern Sweden. A logistic regression approach was used to predict the probability and the Hosmer–Lemeshow goodness-of-fit test to evaluate the fit. Diameter at breast height (DBH), quadratic mean DBH, thinning intensity, thinning quotient, basal area, number of stems per hectare, stand age, number of thinnings, and site index were used as explanatory variables. Separate analyses for stands thinned from below, stands thinned from above, and unthinned stands were performed. The modelled probability graphs for trees not being removed, plotted against their diameter at breast height, had clear S-shapes for both unthinned stands and stands thinned from below. The graph for stands thinned from above was bell-shaped.


2010 ◽  
Vol 40 (5) ◽  
pp. 843-849 ◽  
Author(s):  
John B. Bradford ◽  
Anthony W. D’Amato ◽  
Brian J. Palik ◽  
Shawn Fraver

Growth dominance is a relatively new, simple, quantitative metric of within-stand individual tree growth patterns, and is defined as positive when larger trees in the stand display proportionally greater growth than smaller trees, and negative when smaller trees display proportionally greater growth than larger trees. We examined long-term silvicultural experiments in red pine ( Pinus resinosa Ait.) to characterize how stand age, thinning treatments (thinned from above, below, or both), and stocking levels (residual basal area) influence stand-level growth dominance through time. In stands thinned from below or from both above and below, growth dominance was not significantly different from zero at any age or stocking level. Growth dominance in stands thinned from above trended from negative at low stocking levels to positive at high stocking levels and was positive in young stands. Growth dominance in unthinned stands was positive and increased with age. These results suggest that growth dominance provides a useful tool for assessing the efficacy of thinning treatments designed to reduce competition between trees and promote high levels of productivity across a population, particularly among crop trees.


2014 ◽  
Vol 44 (9) ◽  
pp. 1051-1057 ◽  
Author(s):  
Phillip van Mantgem ◽  
Adrian Das

Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.


1992 ◽  
Vol 22 (3) ◽  
pp. 341-347 ◽  
Author(s):  
W.R. Smith ◽  
R.M. Farrar Jr. ◽  
P.A. Murphy ◽  
J.L. Yeiser ◽  
R.S. Meldahl ◽  
...  

Data were collected on open-grown loblolly pine (Pinustaeda L.), longleaf pine (Pinuspalustris Mill.), and shortleaf pine (Pinusechinata Mill.) and analyzed to provide predictive equations of crown width and maximum potential basal area growth for crown competition and growth and yield models. The measurements were taken on 115 open-grown loblolly pine trees and 76 shortleaf pines in southeastern Arkansas. The longleaf pine data consisted of 81 open-grown trees from southern Alabama, Georgia, and Florida. A circle and an ellipse were tested as geometric models of the vertically projected crown. No significant differences between the tree shapes were found based on analyses of length and azimuth of the largest crown diameter, and the circle was chosen as an appropriate model. This indicated that only the distance between trees, not their orientation to one another, need be included in models of crown competition based on crown contact. Predictive equations of mean crown width based on diameter at breast height were fitted for each species for use in models of crown competition. A Chapman–Richards growth rate function with an intercept term was fit to periodic annual inside-bark basal area growth based on initial inside-bark basal area to provide empirical estimates of maximum basal area growth rates for growth and yield modeling of the given species. Additionally, equations to predict double bark thickness as a function of diameter at breast height were fit for each species to facilitate the use of the equations with outside-bark measurements of diameter.


2008 ◽  
Vol 32 (4) ◽  
pp. 173-183 ◽  
Author(s):  
John Paul McTague ◽  
David O'Loughlin ◽  
Joseph P. Roise ◽  
Daniel J. Robison ◽  
Robert C. Kellison

Abstract A system of stand level and individual tree growth-and-yield models are presented for southern hardwoods. These models were developed from numerous permanent growth-and-yield plots established across 13 states in the US South on 9 site types, in even-aged (age classes from 20 to 60 years), fully stocked, naturally regenerated mixed hardwood and mixed hardwood-pine stands. Nested plots (⅕ and ac) were remeasured at 5-year intervals. The system of permanent plots was established and maintained by private and public members in the North Carolina State University Hardwood Research Cooperative. Stand level models are presented for dominant height, survival, basal area prediction and projection, and the ingrowth component. Individual tree diameter growth and tree height models were constructed for the most common species: sweetgum, tupelo, yellow-poplar, blackgum, and red maple. All other species were grouped according to growth dynamics into four species groups using cluster analysis. A ranking variable was incorporated into the individual tree growth models to account for competition.


2020 ◽  
Vol 29 (3) ◽  
pp. e019
Author(s):  
Lucio Di Cosmo ◽  
Diego Giuliani ◽  
Maria Michela Dickson ◽  
Patrizia Gasparini

Aims of the study. Assessment of growth is essential to support sustainability of forest management and forest policies. The objective of the study was to develop a species-specific model to predict the annual increment of tree basal area through variables recorded by forest surveys, to assess forest growth directly or in the context of more complex forest growth and yield simulation models.Area of the study. Italy.Material and methods. Data on 34638 trees of 31 different forest species collected in 5162 plots of the Italian National Forest Inventory were used; the data were recorded between 2004 and 2006. To account for the hierarchical structure of the data due to trees nested within plots, a two-level mixed-effects modelling approach was used.Main results. The final result is an individual-tree linear mixed-effects model with species as dummy variables. Tree size is the main predictor, but the model also integrates geographical and topographic predictors and includes competition. The model fitting is good (McFadden’s Pseudo-R2 0.536), and the variance of the random effect at the plot level is significant (intra-class correlation coefficient 0.512). Compared to the ordinary least squares regression, the mixed-effects model allowed reducing the mean absolute error of estimates in the plots by 64.5% in average.Research highlights. A single tree-level model for predicting the basal area increment of different species was developed using forest inventory data. The data used for the modelling cover 31 species and a great variety of growing conditions, and the model seems suitable to be applied in the wider context of Southern Europe.   Keywords: Tree growth; forest growth modelling; forest inventory; hierarchical data structure; Italy.Abbreviations used: BA - basal area; BAI – five-year periodic basal area increment; BALT - basal area of trees larger than the subject tree; BASPratio - ratio of subject tree species basal area to stand basal area; BASTratio - ratio of subject tree basal area to stand basal area; CRATIO - crown ratio; DBH – diameter at breast height ; DBH0– diameter at breast height corresponding to five years before the survey year; DBHt– diameter at breast height measured in the survey year; DI5 - five-year, inside bark, DBH increment; HDOM - dominant height; LULUCF - Land Use, Land Use Changes and Forestry; ME - mean error; MAE - mean absolute error; MPD - mean percent deviation; MPSE - mean percent standard error; NFI(s) - National Forest Inventory/ies; OLS - ordinary least squares regression; RMSE - root mean squared error; UNFCCC - United Nation Framework Convention on Climate Change.


1996 ◽  
Vol 13 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Harald Piene ◽  
Janine D'Amours ◽  
Alan A. Bray

Abstract Comparisons of estimates of volume and volume increment, based on increment cores sampled at breast height and on stem analysis, were made in a young balsam fir stand that had been defoliated by spruce budworm. Use of increment cores is not recommended to estimate individual tree growth, because large errors, ranging from 20.9 to 57.2%, and error variability can be expected. The inability, when using increment cores, to estimate basal area is the major source of this variation. Although large uncertainties are associated with future growth predictions, on a per ha basis, changes over time based on increment cores may in some instances give comparable results to those based on stem analysis due to the canceling effect of trees being approximately equally overestimated and underestimated. However, a prerequisite is that the defoliation history and the year of individual tree death are known in detail to aid in the correct dating of ring widths. North. J. Appl. For. 13(2):73-78.


2015 ◽  
Vol 45 (8) ◽  
pp. 1006-1018 ◽  
Author(s):  
Sonja Vospernik ◽  
Robert A. Monserud ◽  
Hubert Sterba

We examined the relationship between thinning intensity and volume increment predicted by four commonly used individual-tree growth models in Central Europe (i.e., BWIN, Moses, Prognaus, and Silva). We replicated conditions of older growth and yield experiments by selecting 34 young, dense plots of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and European beech (Fagus sylvatica L.). At these plots, we simulated growth, with mortality only, to obtain the maximum basal area. Maximum basal area was then decreased by 5% or 10% steps using thinning from below. Maximum density varied considerably between simulators; it was mostly in a reasonable range but partly exceeded the maximum basal area observed by the Austrian National Forest Inventory or the self-thinning line. In almost all cases, simulated volume increment was highest at maximum basal area and then decreased with decreasing basal area. Critical basal area, at which 95% of maximum volume increment can be achieved, ranged from 0.46 to 0.96. For all simulators, critical basal area was lower for the more shade-tolerant species. It increased with age, except for Norway spruce, when simulated with the BWIN model. Age, where mean annual increment culminated, compared well with yield tables.


2020 ◽  
Author(s):  
Seyedeh Kosar Hamidi ◽  
Aaron Weiskittel ◽  
Mahmoud Bayat ◽  
Asghar Fallah

Abstract BackgroundThe Hyrcanian forests of Iran contain many species-rich communities that can only be maintained through an understanding of the renewal and development of these forests. Located in the Jojadeh section of the Farim forest in northern Iran, individual tree growth of five distinct species [(Oriental beech (Fagus orientalis Lipsky), chestnut-leaved oak (Quercus castaneifolia Coss. ex J.Gay), Persian maple (Acer velutinum Boiss.), common hornbeam (Carpinus betulus L.) and Caucasian alder (Alnus subcordata C.A.Mey.)] were measured on 313 permanent sample plots (0.1 ha) over a 10-year period (2003-2013). MethodsIn this analysis, various tree-level predictions were investigated using the available data with application of parametric models and two artificial neural networks (i.e., the multilayer perceptron (MLP) and radial basis function (RBF) networks). ResultsIndividual tree diameter growth models showed a robust negative relationship with basal area in larger trees (BAL), which was relatively consistent across species. A total height model indicated that the examined species did not differ for a given set of covariates. In the survival model, the survival probability of Oriental beech was lower than the other species, while the ingrowth model revealed sapling density of all species increased with the greater basal area. The artificial neural network based on the MLP was superior for all models and predicted more accurately than the RBF. Furthermore, the models based on the MLP were also superior to the parametric individual tree models developed using mixed-effect regression. ConclusionThe use of these developed models in forest planning and management is imperative, but assessment of long-term projection behavior across the contrasting statistical approaches used is warranted despite the general superiority of the non-parametric models.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Fitsum Temesgen ◽  
Bikila Warkineh

The study was conducted in Kafta Sheraro National Park (KSNP) dry woodland natural forest located in Kafta Humera and Tahitay Adiyabo weredas (districts), Western and Northwestern Zones of Tigray regional governmental state, North Ethiopia. The objective of the study was to explore the floristic composition, structure, and regeneration of woody species in the home of Loxodonta africana L., Hippotragus equinus, Anthropoides virgo, Ourebia ourebi, Crocuta crocuta, Tragelaphus strepsiceros, Phacochoerus africanus, and unidentified crocodile and fish species. In the park, the vegetation ecology has not been studied up to date which is necessary for conservation. The systematic sampling technique was used to collect vegetation and human disturbance (presence and absence) data from August to December 2018. The vegetation data were collected from 161 plots each with a size of 400 m2 (20 m × 20 m) for tree/shrub while subplots of size 100 m2 (10 m × 10 m) and 25 m2 (5 m × 5 m) for sapling and seedling, respectively, were established in the main plots. Individual tree and shrub diameter at breast height (DBH) ≥2.5 cm and height ≥ 2 m were measured using tape meter and clinometer, respectively. Diameter at breast height (DBH), frequency, density, basal area, and importance value index (IVI) were used for vegetation structure description while the density of mature trees, sapling, and seedling was used for regeneration. A total of 70 woody species (46 (65.7%) trees, 18 (25.7%) shrubs, and 6 (8.6%) tree/shrub) were identified. The total basal area and density of 79.3 ± 4.6 m2·ha−1 and 466 ± 12.8 stems·ha−1, respectively, were calculated for 64 woody species. Fabaceae was the most dominant family with 16 species (22.9%) followed by Combretaceae with 8 species (11.4%). The most dominant and frequent species throughout the park were Acacia mellifera, Combretum hartmannianum, Terminalia brownii, Balanites aegyptiaca, Dichrostachys cinerea, Acacia senegal, Acacia oerfota, Boswellia papyrifera, Ziziphus spina-christi, and Anogeissus leiocarpus. Abnormal patterns of selected woody species were dominantly identified. The regenerating status of all the woody plant species was categorized as “fair” (18.75%), “poor” (7.81%), and “none” (73.44%). There was a significant correlation between altitude, anthropogenic disturbance (grazing and fire frequency), and density of seedling, sapling, and mature trees. But there was no correlation between gold mining and regeneration population. However, there is a good initiation for the conservation of the park; still, the vegetation of the park was threatened by human-induced fire following intensive farming, gold mining, and overgrazing. Therefore, the study area was the habitat for the population of the African elephant; species with low importance value indices and lack or having few seedling and sapling stage should be prioritized for conservation, and their soil seed banks should be studied further.


Sign in / Sign up

Export Citation Format

Share Document