Modelling survival probability of individual trees in Norway spruce stands under different thinning regimes

2005 ◽  
Vol 35 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Kjell Karlsson ◽  
Lennart Norell

The probability that an individual tree will remain in even-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinning programmes was modelled, using data from a thinning experiment established in 25 localities in southern Sweden. A logistic regression approach was used to predict the probability and the Hosmer–Lemeshow goodness-of-fit test to evaluate the fit. Diameter at breast height (DBH), quadratic mean DBH, thinning intensity, thinning quotient, basal area, number of stems per hectare, stand age, number of thinnings, and site index were used as explanatory variables. Separate analyses for stands thinned from below, stands thinned from above, and unthinned stands were performed. The modelled probability graphs for trees not being removed, plotted against their diameter at breast height, had clear S-shapes for both unthinned stands and stands thinned from below. The graph for stands thinned from above was bell-shaped.

2005 ◽  
Vol 35 (7) ◽  
pp. 1767-1778 ◽  
Author(s):  
Tuula Jaakkola ◽  
Harri Mäkinen ◽  
Pekka Saranpää

The effect of thinning intensity on growth and wood density in Norway spruce (Picea abies (L.) Karst.) was investigated in two long-term thinning experiments in southeastern Finland. The stands were approaching maturity, and their development had already been studied for 30 years. The intensities of thinning were low, normal, and high (i.e., the stand basal area after the thinning was, on average, 40, 27, and 24 m2·ha–1, respectively, in Heinola, and 30, 28, and 17 m2·ha–1 in Punkaharju, respectively). Compared with the low thinning intensity, the normal and high thinning intensities increased the basal-area increment of individual trees by 52% and 68%, respectively. Normal and high thinning intensities resulted in a relatively small reduction (1%–4%) of mean ring density compared with low thinning intensity. The random variation in wood density between and within trees was large. About 27% of the total variation in wood density was related to variation between rings. Our results indicate that the prevailing thinning intensities in Norway spruce stands in Fennoscandia cause no marked changes in wood density. At least, the possible reduction in wood density is low compared with the increase in individual tree growth.


1993 ◽  
Vol 10 (2) ◽  
pp. 75-85 ◽  
Author(s):  
David K. Walters ◽  
Alan R. Ek

Abstract Models that estimate per acre basal area, number of stems, quadratic mean diameter, volumes to specified top diameters, and biomass per acre by stand age and site index were developed and fitted to data for 14 forest types in Minnesota. The resulting equations were developed from linear and nonlinear least squares analyses using USDA Forest Service Forest Inventory and Analysis data. These equations are intended for projecting future forest characteristics including yield on a statewide basis assuming the continuation of the level of management inherent in the data. Parameter estimates and goodness-of-fit statistics are provided for each model. Also discussed are the implementation procedures, assumptions, consistency of estimates, estimates for mixed species stands, and other considerations in applications. North. J. Appl. For. 10(2): 75-85.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 451 ◽  
Author(s):  
Ram P. Sharma ◽  
Igor Štefančík ◽  
Zdeněk Vacek ◽  
Stanislav Vacek

Individual tree growth and yield models precisely describe tree growth irrespective of stand complexity and are capable of simulating various silvicultural alternatives in the stands with diverse structure, species composition, and management history. We developed both age dependent and age independent diameter increment models using long-term research sample plot data collected from both monospecific and mixed stands of European beech (Fagus sylvatica L.) in the Slovak Republic. We used diameter at breast height (DBH) as a main predictor and other characteristics describing site quality (site index), stand development stage (dominant height and stand age), stand density or competition (ratio of individual tree DBH to quadratic mean diameter), species mixture (basal area proportion of a species of interest), and dummy variable describing stand management regimes as covariate predictors to develop the models. We evaluated eight versatile growth functions in the first stage using DBH as a single predictor and selected the most suitable one, i.e., Chapman-Richards function for further analysis through the inclusion of covariate predictors. We introduced the random components describing sample plot-level random effects and stochastic variations on the diameter increment, into the models through the mixed-effects modelling. The autocorrelation caused by hierarchical data-structure, which is assumed to be partially reduced by mixed-effects modelling, was removed through the inclusion of the parameter accounting for the autoregressive error-structures. The models described about two-third parts of a total variation in the diameter increment without significant trends in the residuals. Compared to the age independent mixed-effects model (conditional coefficient of determination, R c 2 = 0.6566; root mean square error, RMSE = 0.1196), the age dependent model described a significantly larger proportion of the variations in diameter increment ( R c 2 = 0.6796, RMSE = 0.1141). Diameter increment was significantly influenced differently by covariate predictors included into the models. Diameter increment decreased with the advancement of stand development stage (increased dominant height and stand age), increasing intraspecific competition (increased basal area proportion of European beech per sample plot), and diameter increment increased with increasing site quality (increased site index) and decreased competition (increased ratio of DBH to quadratic mean diameter). Our mixed-effects models, which can be easily localized with the random effects estimated from prior measurement of diameter increments of four randomly selected trees per sample plot, will provide high prediction accuracies. Our models may be used for simulating growth of European beech irrespective of its stand structural complexity, as these models have included various covariate variables describing both tree-and stand-level characteristics, thinning regimes, except the climate characteristics. Together with other forest models, our models will be used as inputs to the growth simulator to be developed in the future, which is important for decision-making in forestry.


2020 ◽  
Vol 29 (3) ◽  
pp. e019
Author(s):  
Lucio Di Cosmo ◽  
Diego Giuliani ◽  
Maria Michela Dickson ◽  
Patrizia Gasparini

Aims of the study. Assessment of growth is essential to support sustainability of forest management and forest policies. The objective of the study was to develop a species-specific model to predict the annual increment of tree basal area through variables recorded by forest surveys, to assess forest growth directly or in the context of more complex forest growth and yield simulation models.Area of the study. Italy.Material and methods. Data on 34638 trees of 31 different forest species collected in 5162 plots of the Italian National Forest Inventory were used; the data were recorded between 2004 and 2006. To account for the hierarchical structure of the data due to trees nested within plots, a two-level mixed-effects modelling approach was used.Main results. The final result is an individual-tree linear mixed-effects model with species as dummy variables. Tree size is the main predictor, but the model also integrates geographical and topographic predictors and includes competition. The model fitting is good (McFadden’s Pseudo-R2 0.536), and the variance of the random effect at the plot level is significant (intra-class correlation coefficient 0.512). Compared to the ordinary least squares regression, the mixed-effects model allowed reducing the mean absolute error of estimates in the plots by 64.5% in average.Research highlights. A single tree-level model for predicting the basal area increment of different species was developed using forest inventory data. The data used for the modelling cover 31 species and a great variety of growing conditions, and the model seems suitable to be applied in the wider context of Southern Europe.   Keywords: Tree growth; forest growth modelling; forest inventory; hierarchical data structure; Italy.Abbreviations used: BA - basal area; BAI – five-year periodic basal area increment; BALT - basal area of trees larger than the subject tree; BASPratio - ratio of subject tree species basal area to stand basal area; BASTratio - ratio of subject tree basal area to stand basal area; CRATIO - crown ratio; DBH – diameter at breast height ; DBH0– diameter at breast height corresponding to five years before the survey year; DBHt– diameter at breast height measured in the survey year; DI5 - five-year, inside bark, DBH increment; HDOM - dominant height; LULUCF - Land Use, Land Use Changes and Forestry; ME - mean error; MAE - mean absolute error; MPD - mean percent deviation; MPSE - mean percent standard error; NFI(s) - National Forest Inventory/ies; OLS - ordinary least squares regression; RMSE - root mean squared error; UNFCCC - United Nation Framework Convention on Climate Change.


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Nguyen Thanh Tuan ◽  
Vu Dinh Duy ◽  
Shen H-L

The aim of this study was to explore the correlation of competition indices (CIs) on individual tree growth for Korean pine (Pinus koraiensis) plantation using partial correlation analysis and generalized linear models. The data were collected from 15 permanent plots in Mengjiagang forestry farm, Northeast China. The results showed that the distance dependent CIs have a higher predictive capacity for individual growth of pine trees. The control index of competitive trees number (CI1) combined with the selection fixed competitor trees (M2) was found to be the most well correlated competition measure with five - years diameter increment. Thus, the competition index (CI1- M2) was recommended for developing individual tree growth models. The subject tree diameter at breast height, crown width, height to crown base, tree volume and basal area all showed a significantly linear correlation with tree competition intensity (P < 0,05). Diameter at breast height, crown width, tree volume and basal area all decreased with increasing competition intensity, whereas the height to crown base increased. There was no significant relationship between competition intensity and tree height (P > 0,05). The optimal model of predicting individual growth with logarithm of diameter at breast height and CIs as the independent variables due to the best fitting performance. This results also showed considerable improvement in predicting individual tree periodic growth when including competition indices that the mean absolute error is reduced in the range of 22−25%. 


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Fitsum Temesgen ◽  
Bikila Warkineh

The study was conducted in Kafta Sheraro National Park (KSNP) dry woodland natural forest located in Kafta Humera and Tahitay Adiyabo weredas (districts), Western and Northwestern Zones of Tigray regional governmental state, North Ethiopia. The objective of the study was to explore the floristic composition, structure, and regeneration of woody species in the home of Loxodonta africana L., Hippotragus equinus, Anthropoides virgo, Ourebia ourebi, Crocuta crocuta, Tragelaphus strepsiceros, Phacochoerus africanus, and unidentified crocodile and fish species. In the park, the vegetation ecology has not been studied up to date which is necessary for conservation. The systematic sampling technique was used to collect vegetation and human disturbance (presence and absence) data from August to December 2018. The vegetation data were collected from 161 plots each with a size of 400 m2 (20 m × 20 m) for tree/shrub while subplots of size 100 m2 (10 m × 10 m) and 25 m2 (5 m × 5 m) for sapling and seedling, respectively, were established in the main plots. Individual tree and shrub diameter at breast height (DBH) ≥2.5 cm and height ≥ 2 m were measured using tape meter and clinometer, respectively. Diameter at breast height (DBH), frequency, density, basal area, and importance value index (IVI) were used for vegetation structure description while the density of mature trees, sapling, and seedling was used for regeneration. A total of 70 woody species (46 (65.7%) trees, 18 (25.7%) shrubs, and 6 (8.6%) tree/shrub) were identified. The total basal area and density of 79.3 ± 4.6 m2·ha−1 and 466 ± 12.8 stems·ha−1, respectively, were calculated for 64 woody species. Fabaceae was the most dominant family with 16 species (22.9%) followed by Combretaceae with 8 species (11.4%). The most dominant and frequent species throughout the park were Acacia mellifera, Combretum hartmannianum, Terminalia brownii, Balanites aegyptiaca, Dichrostachys cinerea, Acacia senegal, Acacia oerfota, Boswellia papyrifera, Ziziphus spina-christi, and Anogeissus leiocarpus. Abnormal patterns of selected woody species were dominantly identified. The regenerating status of all the woody plant species was categorized as “fair” (18.75%), “poor” (7.81%), and “none” (73.44%). There was a significant correlation between altitude, anthropogenic disturbance (grazing and fire frequency), and density of seedling, sapling, and mature trees. But there was no correlation between gold mining and regeneration population. However, there is a good initiation for the conservation of the park; still, the vegetation of the park was threatened by human-induced fire following intensive farming, gold mining, and overgrazing. Therefore, the study area was the habitat for the population of the African elephant; species with low importance value indices and lack or having few seedling and sapling stage should be prioritized for conservation, and their soil seed banks should be studied further.


2017 ◽  
pp. 31-54
Author(s):  
Martin Bobinac ◽  
Sinisa Andrasev ◽  
Andrijana Bauer-Zivkovic ◽  
Nikola Susic

The paper studies the effects of two heavy selection thinnings on the increment of Norway spruce trees exposed to ice and snow breaks in eastern Serbia. In a thinning that was carried out at 32 years of age, 556 candidates per hectare were selected for tending, and at the age of 40, of the initial candidates, 311 trees per hectare (55.9%) were selected as future trees. In all trees at 41-50 age period, diameter increment was higher by 31%, basal area increment by 64% and volume increment by 67% compared to 32-40 age period. The collective of indifferent trees is significantly falling behind compared to future trees in terms of increment values in both observed periods. However, the value of diameter, basal area and volume increments, of the collective of "comparable" indifferent trees are lower in comparison to the values of increments of future trees by 10-15% in the 32-40 age period, and by 15-21% in the 41-50 age period and there are no significant differences. The results show that heavy selective thinnings, initially directed at a larger number of candidates for tending at stand age that does not differ much from the period of carrying out first "commercial" thinnings, improve the growth potential of future and indifferent trees, where it is rational to do the tree replacement for the final crop in "susceptible" growth stage to snow and ice breaks.


1989 ◽  
Vol 6 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Andrew M. Gordon ◽  
Peter A. Williams ◽  
Edward P. Taylor

Abstract Four dominant or codominant Norway spruce trees from each of 55 sites were destructively sampled and the annual height growth determined by stem analysis. The sampled sites were stratified by soil textural class (coarse, medium, and fine) and depth to distinct mottling (0-16, 16-40, and 40 in.). Two sets of an-amorphic site index curves were constructed using a total age of 30 years (SI30), and breast height age of 25 years (SIBH25) as base ages. The mean SI30 from Ontario (53 ft) was found to be 17.8% higher than the mean values published from Vermont (45 ft) and currently used in Ontario. SIBH25 values had a range of 34.6 to 74.8 ft with a mean of 55.3 ft. Analysis of variance showed significant differences in SIBH25 due to soil texture and drainage class, and in years to breast height (BH) due to drainage class. SIBH25 was highest on sites with loamy soils and distinct mottling at 16-40 in. It took an average of 6.5 years for seedlings to reach BH with a range of 3 to 12 years. Years to BH was lowest on sites with sandy soils and those with distinct mottling below 40 in. North. J. Appl. For. 6(1):23-26, March 1989.


1989 ◽  
Vol 4 (4) ◽  
pp. 116-119 ◽  
Author(s):  
Linda S. Heath ◽  
H. N. Chappell

Abstract Response surface methodology was used to estimate six-year volume growth response to 1 application of 200 lb nitrogen per acre in unthinned and thinned Douglas-fir (Pseudotsuga menziesii) stands of breast height age (bha) 25 years or less. Regional mean fertilizer response was 16% in unthinned stands and 20% in thinned stands. Site index had an increasingly inverse effect on response as basal area increased in both unthinned and thinned stands. Response varied little over site index in regions of low basal area, decreased moderately as site index increased in the intermediate region, and decreased rapidly in the high basal area region. West. J. Appl. For. 4(4):116-119, October 1989.


2004 ◽  
Vol 34 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Lauri Mehtätalo

A height–diameter (H–D) model for Norway spruce (Picea abies (L.) Karst.) was estimated from longitudinal data. The Korf growth curve was used as the H–D curve. Firstly, H–D curves for each stand at each measurement time were fitted, and the trends in the parameters of the H–D curve were modeled. Secondly, the trends were included in the H–D model to estimate the whole model at once. To take the hierarchy of the data into account, a mixed-model approach was used. This makes it possible to calibrate the model for a new stand at a given point in time using sample tree height(s). The heights may be from different points in time and need not be from the point in time being predicted. The trends in the parameters of the H–D curve were not estimated as a function of stand age but as a function of the median diameter of basal area weighted diameter distribution (dGm). This approach was chosen because the stand ages may differ substantially among stands with similar current growth patterns. This is true especially with shade-tolerant tree species, which can regenerate and survive for several years beneath the dominant canopy layer and start rapid growth later. The growth patterns in stands with a given dGm, on the other hand, seem not to vary much. This finding indicates that the growth pattern of a stand does not depend on stand age but on mean tree size in the stand.


Sign in / Sign up

Export Citation Format

Share Document