Crown and basal area relationships of open-grown southern pines for modeling competition and growth

1992 ◽  
Vol 22 (3) ◽  
pp. 341-347 ◽  
Author(s):  
W.R. Smith ◽  
R.M. Farrar Jr. ◽  
P.A. Murphy ◽  
J.L. Yeiser ◽  
R.S. Meldahl ◽  
...  

Data were collected on open-grown loblolly pine (Pinustaeda L.), longleaf pine (Pinuspalustris Mill.), and shortleaf pine (Pinusechinata Mill.) and analyzed to provide predictive equations of crown width and maximum potential basal area growth for crown competition and growth and yield models. The measurements were taken on 115 open-grown loblolly pine trees and 76 shortleaf pines in southeastern Arkansas. The longleaf pine data consisted of 81 open-grown trees from southern Alabama, Georgia, and Florida. A circle and an ellipse were tested as geometric models of the vertically projected crown. No significant differences between the tree shapes were found based on analyses of length and azimuth of the largest crown diameter, and the circle was chosen as an appropriate model. This indicated that only the distance between trees, not their orientation to one another, need be included in models of crown competition based on crown contact. Predictive equations of mean crown width based on diameter at breast height were fitted for each species for use in models of crown competition. A Chapman–Richards growth rate function with an intercept term was fit to periodic annual inside-bark basal area growth based on initial inside-bark basal area to provide empirical estimates of maximum basal area growth rates for growth and yield modeling of the given species. Additionally, equations to predict double bark thickness as a function of diameter at breast height were fit for each species to facilitate the use of the equations with outside-bark measurements of diameter.

1983 ◽  
Vol 13 (4) ◽  
pp. 563-571 ◽  
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

A measure of kind and level of thinning is developed and its relationship to other stand attributes such as number of trees, basal area, and volume removed in thinning is quantified. This measure or thinning index is based on the ratio of the quadratic mean diameter of thinned trees to the quadratic mean diameter of all trees before thinning. The thinning index is then logically incorporated into a thinning multiplier from which is derived a compatible basal-area growth projection model to generalize the previous concepts for thinning effects in systems for predicting growth and yield. Empirical tests with data from thinned and unthinned natural stands of loblolly pine, from thinned and unthinned slash pine plantations, and from thinned western larch stands show the model to provide estimates with improved properties. Hence, the thinning index and the thinning multiplier are also proposed for other situations involving effects of thinning.


2000 ◽  
Vol 24 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Michael M. Huebschmann ◽  
Lawrence R. Gering ◽  
Thomas B. Lynch ◽  
Onesphore Bitoki ◽  
Paul A. Murphy

Abstract A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and merchantable heights, and total and merchantable volumes and weights of shortleaf pine trees; and (2) stand-level equations that predict hardwood ingrowth, basal-area growth, and mortality. These equations were combined into a computer simulation program that forecasts future states of uneven-aged shortleaf pine stands. Based on comparisons of observed and predicted stand conditions in shortleaf pine permanent forest inventory plots and examination of the growth patterns of hypothetical stands, the simulator makes acceptable forecasts of stand attributes. South. J. Appl. For. 24(2):112-120.


1988 ◽  
Vol 18 (7) ◽  
pp. 851-858 ◽  
Author(s):  
B. M. Cregg ◽  
P. M. Dougherty ◽  
T. C. Hennessey

A 10-year-old stand of loblolly pine (Pinustaeda L.) in southeastern Oklahoma was thinned to three target basal-area levels: 5.8, 11.5, and 23 m2•ha−1 (control). Specific gravity, latewood percentage, date of transition from earlywood to latewood, growth, and climate variables were measured for 2 years after thinning. Variation in the measured wood properties was more influenced by climatic variation than by the thinning treatments. Diameter growth and per-tree basal-area growth were significantly greater on the thinned treatments both years after thinning. However, stand basal-area growth was greatest on the unthinned treatment. Basal-area growth rates were significantly related to stand basal area, tree size, soil water potential, and air temperature. Early in the summer, growth was positively related to mean daily temperature, while later in the summer, growth was negatively related to mean daily temperature, reflecting the influence of high-temperature stress on growth. A year with high summer rainfall (1984) resulted in wood with a higher percentage of latewood and higher specific gravity than wood produced in a year with low summer rainfall (1985). The date of latewood initiation was significantly related to tree size, soil moisture, and evaporative demand. The date of transition from earlywood to latewood occurred 10–14 days sooner on the unthinned plots in both years. However, annual ring latewood percentage and specific gravity were not significantly affected by thinning. Increased late-season growth rates compensated for the later transition date on the thinned treatments, resulting in no net change in ring latewood percentage due to thinning. The results indicate that individual tree basal-area growth can be increased by thinning without reducing wood density.


1984 ◽  
Vol 14 (2) ◽  
pp. 295-295
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

not available


1987 ◽  
Vol 17 (6) ◽  
pp. 534-538 ◽  
Author(s):  
Peter T. Sprinz ◽  
Harold E. Burkhart

Empirical and theoretical relationships between tree crown, stem, and stand characteristics for unthinned stands of planted loblolly pine (Pinustaeda L.) were investigated. Readily measured crown variables representing the amount of photosynthetic area or distance of the translocation process were identified. Various functions of these variables were defined and evaluated with regard to efficacy in predicting stem and stand attributes. Linear models were used to evaluate the contribution of the crown variables in predicting stem and stand characteristics. The stem attributes modeled included basal area, basal area growth, diameter at breast height, and diameter growth, while the stand attributes modeled were basal area, basal area growth, arithmetic mean diameter, and mean diameter growth. Crown diameter and crown projection area were particularly important in contributing to model fit and prediction of individual stem characteristics, while sum of crown projection areas was found especially important in stand level equations. As these crown measures developed over time so did corresponding stem and stand attributes.


1996 ◽  
Vol 26 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Paul A. Murphy ◽  
Michael G. Shelton

Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a modifier component. The growth component can be any function that approximates tree growth patterns, and the logistic function is chosen as the modifier component. This approach can be adapted to a variety of stand conditions, and its application is demonstrated using data from an uneven-aged loblolly pine (Pinustaeda L.) study located in Arkansas and Louisiana.


1983 ◽  
Vol 13 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Riyaz A. Sadiq

Logistic curves have been used to study the growth of human and animal populations. Physical chemists have used it to study the growth and senescence of chemical reactions. The present study investigates the application of the curve to forest stands for estimating basal area growth and yield. Graphic analysis with the basal area growth data, from permanent sample plots in red pine (Pinusresinosa Ait.) plantations of southern Ontario, exhibited reverse logistic trends. The parameters of the reverse logistic function were estimated by nonlinear regression techniques. Freese's chi-square test was employed to determine the accuracy of the resulting estimates of basal area growth and yield. Results, from the data used here, indicate that the function not only fits the data well but also has high predictive power.


1993 ◽  
Vol 23 (10) ◽  
pp. 2133-2140 ◽  
Author(s):  
Terry R. Clason

A hardwood suppression treatment applied in a 7-year-old loblolly pine (Pinustaeda L.) plantation enhanced productivity through a 27-year rotation that included two commercial thinnings. By age 27, the suppression treatment reduced the hardwood overstory but did not alter the species diversity of the understory vegetation. Pine diameter at breast height, basal area, and merchantable volume for suppressed and check treatments averaged 29.4 and 26.6 cm, 27.1 and 21.6 m2/ha, and 182 and 141 m3/ha, respectively. Harvest volumes for the respective treatments were 27.8 and 12.8 m3/ha with treatment mean total volume growth being 201.3 and 145.1 m3/ha. Besides reducing total volume yields by 27%, hardwood competition had a significant effect on product volume distribution. Check treatment sawtimber volume was 52.5 m3/ha less than the suppressed treatment. Lower sawtimber yields reduced check treatment revenue potential at age 27 by $1442.32/ha. If the revenue losses based on age 27 stumpage value were discounted at 8%, then the cost of an age 7 hardwood suppression treatment could not exceed $305.58/ha for a 27-year rotation. After 20 years, an early hardwood suppression treatment improved the multiple use potential of a loblolly pine plantation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245218
Author(s):  
Santosh K. Ojha ◽  
Luben D. Dimov ◽  
Wubishet Tadesse

The long-term decline of longleaf pine-dominated forests has received considerable attention among land managers and conservation professionals in the last few decades. The objective of this study was to investigate the change in and the variation of the proportion, density, growth, and dominance of longleaf pine across the longleaf pine ecosystems for the 1997–2018 period. We used two sets of measurements of 1,432 plots from the Forest Inventory and Analysis (FIA) dataset covering the entire current longleaf pine range. The relationship between disturbances and longleaf pine basal area ratio and basal area growth were analyzed using linear mixed modeling. Change detection maps were produced using the Inverse Distance Weighted (IDW) interpolation method. The total basal area and aboveground biomass per hectare increased in 64% and 72%, but decreased in 30% and 28% of the study area, respectively, between the first and last inventory intervals. Species richness and diversity generally decreased across the studied plots. Longleaf pine tree density and importance value percent increased during the period. However, longleaf basal area ratio and aboveground biomass ratio in the stands decreased on average by 5% during the period, although these ratios increased in some locations in southwest Georgia and near the west coast of Florida. The longleaf pine basal area ratio and aboveground biomass ratio decreased equally in 37%, and increased in 19% and 21% of the study area, respectively. There was about 79% variation in the ratio of longleaf pine basal area among plots. When compared to the natural control of no disturbance, fire disturbance was significantly associated with greater longleaf pine basal area ratio and basal area growth. Understanding the change in growth and distribution patterns of longleaf pine across its range over time is vital to restore these critical ecosystems.


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Nguyen Thanh Tuan ◽  
Vu Dinh Duy ◽  
Shen H-L

The aim of this study was to explore the correlation of competition indices (CIs) on individual tree growth for Korean pine (Pinus koraiensis) plantation using partial correlation analysis and generalized linear models. The data were collected from 15 permanent plots in Mengjiagang forestry farm, Northeast China. The results showed that the distance dependent CIs have a higher predictive capacity for individual growth of pine trees. The control index of competitive trees number (CI1) combined with the selection fixed competitor trees (M2) was found to be the most well correlated competition measure with five - years diameter increment. Thus, the competition index (CI1- M2) was recommended for developing individual tree growth models. The subject tree diameter at breast height, crown width, height to crown base, tree volume and basal area all showed a significantly linear correlation with tree competition intensity (P < 0,05). Diameter at breast height, crown width, tree volume and basal area all decreased with increasing competition intensity, whereas the height to crown base increased. There was no significant relationship between competition intensity and tree height (P > 0,05). The optimal model of predicting individual growth with logarithm of diameter at breast height and CIs as the independent variables due to the best fitting performance. This results also showed considerable improvement in predicting individual tree periodic growth when including competition indices that the mean absolute error is reduced in the range of 22−25%. 


Sign in / Sign up

Export Citation Format

Share Document