scholarly journals Design and Development of the Folded 4-Mirror Resonators for Diode End-pumped Solid-State Cr:LiSAF Laser

2016 ◽  
Vol 24 (3S2) ◽  
pp. 109-120
Author(s):  
Nguyen Van Hao ◽  
Pham Van Duong ◽  
Pham Hong Minh ◽  
Do Quoc Khanh ◽  
Antonio Agnesi

We present the design and development of folded four-mirror resonators for diode end-pumped solid-state Cr:LiSAF lasers. The astigmatic effects due to the Brewster-cut laser crystal and two curved mirrors used at oblique incidence were taken into consideration. The obtained results showed the stability regions of resonator, the beam parameters in the resonator and within the laser crystal as well as other sensitive parameters and their variation ranges. Furthermore, the designed folded four-mirror resonators for diode end-pumped Cr:LiSAF laser were experimentally evaluated. The CW Cr:LiSAF laser characteristics in threshold, efficiency and beam quality as well as comparative studies are presented.

2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 704
Author(s):  
Chia-Yu Tsui ◽  
Chun-Yao Yang

Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the β-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of β-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the β-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 μg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 μg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.


Author(s):  
Richard Rand ◽  
Rachel Hastings

Abstract In this work we investigate the following quasiperiodic Mathieu equation: x ¨ + ( δ + ϵ cos ⁡ t + ϵ cos ⁡ ω t ) x = 0 We use numerical integration to determine regions of stability in the δ–ω plane for fixed ϵ. Graphs of these stability regions are presented, based on extensive computation. In addition, we use perturbations to obtain approximations for the stability regions near δ=14 for small ω, and we compare the results with those of direct numerical integration.


Optik ◽  
2019 ◽  
Vol 181 ◽  
pp. 308-313
Author(s):  
Meng-yao Wu ◽  
Shi-yu Wang ◽  
Peng-fei Qu ◽  
Zhen Guo ◽  
De-fang Cai ◽  
...  

2007 ◽  
Vol 33 (1-2) ◽  
pp. 5-11 ◽  
Author(s):  
Xin -Tong Zhang ◽  
Taketo Taguchi ◽  
Hai -Bin Wang ◽  
Qing -Bo Meng ◽  
Osamu Sato ◽  
...  

2014 ◽  
Vol 70 (11) ◽  
pp. 1040-1045 ◽  
Author(s):  
Majid I. Tamboli ◽  
Vir Bahadur ◽  
Rajesh G. Gonnade ◽  
Mysore S. Shashidhar

Racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate, C21H18O8,(1), shows a very efficient intermolecular benzoyl-group migration reaction in its crystals. However, the presence of 4,4′-bipyridine molecules in its cocrystal, C21H18O8·C10H8N2,(1)·BP, inhibits the intermolecular benzoyl-group transfer reaction. In(1), molecules are assembled around the crystallographic twofold screw axis (baxis) to form a helical self-assembly through conventional O—H...O hydrogen-bonding interactions. This helical association places the reactive C6-O-benzoyl group (electrophile, El) and the C4-hydroxy group (nucleophile, Nu) in proximity, with a preorganized El...Nu geometry favourable for the acyl transfer reaction. In the cocrystal(1)·BP, the dibenzoate and bipyridine molecules are arranged alternately through O—H...N interactions. The presence of the bipyridine molecules perturbs the regular helical assembly of the dibenzoate molecules and thus restricts the solid-state reactivity. Hence, unlike the parent dibenzoate crystals, the cocrystals do not exhibit benzoyl-transfer reactions. This approach is useful for increasing the stability of small molecules in the crystalline state and could find application in the design of functional solids.


2002 ◽  
Vol 201 (4-6) ◽  
pp. 381-389 ◽  
Author(s):  
Hyun Su Kim ◽  
Sungman Lee ◽  
Do-Kyeong Ko ◽  
Byung Heon Cha

Sign in / Sign up

Export Citation Format

Share Document