scholarly journals EFFECTS OF SEVERAL FACTORS ON ANTI–VIBRATION ABILITY OF EPDM RUBBER

2018 ◽  
Vol 55 (1B) ◽  
pp. 202
Author(s):  
Phan Quoc Phu

In this research, ethylene–propylene–diene (EPDM) rubber, a type of synthetic rubber with excellent anti–vibration and anti–noise properties, was studied for the application in anti–vibration pads. Via changes in the concentration of substances in the mixtures such as carbon black, triethanolamine (TEA) and sulfur, the mechanical properties and the anti–vibration efficiency of the EPDM rubber samples were determined using mechanical tester. As a result, the EPDM rubber samples containing about 45 % of carbon black N330, 1 % of TEA and 1 % of sulfur showed some good results including the shore hardness about 62 A, the compressive stress at peak of 1.04 N/mm2 and the anti–vibration efficiency approximately 72 %.

2019 ◽  
Vol 9 (13) ◽  
pp. 2640 ◽  
Author(s):  
Young Shin Kim ◽  
Yong Tae Kim ◽  
Euy Sik Jeon

A grommet, made of ethylene propylene diene methylene (EPDM) rubber, is an integral part used for fixing and protecting the wire inserted from the outside to the inside of vehicles. Rubber compounds exhibit various mechanical properties and vulcanization characteristics depending on the accelerator mixing ratio. These mechanical properties affect the insertion and detachment forces when the grommet is manufactured and fixed to the vehicle body. In this study, we experimentally analyzed the changes in the properties of EPDM rubber depending on the vulcanization accelerator to improve the mounting performance of the grommet, and subsequently derived the optimum accelerator mixing ratio. We implemented a mixture design strategy to derive the optimum mixing ratio for obtaining the desired mechanical properties and vulcanization characteristics. The insertion and separation forces of the existing grommet were compared with those of the grommet fabricated using the derived mixing ratio and we found that the mounting performance was improved compared to the existing grommet.


2003 ◽  
Vol 90 (6) ◽  
pp. 1539-1544 ◽  
Author(s):  
F. Abd-El Salam ◽  
M. H. Abd-El Salam ◽  
M. T. Mostafa ◽  
M. R. Nagy ◽  
M. I. Mohamed

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 805
Author(s):  
Egor A. Kapitonov ◽  
Natalia N. Petrova ◽  
Vasilii V. Mukhin ◽  
Leonid A. Nikiforov ◽  
Vladimir D. Gogolev ◽  
...  

The physical and mechanical properties of nitrile–butadiene rubber (NBR) composites with N-cetylpyridinium bromide-carbon black (CPB-CB) were investigated. Addition of 5 parts per hundred rubber (phr) of CPB-CB into NBR improved the tensile strength by 124%, vulcanization rate by 41%, shore hardness by 15%, and decreased the volumetric wear by 7% compared to those of the base rubber-CB composite.


2006 ◽  
Vol 60 (11-12) ◽  
pp. 321-326
Author(s):  
Jaroslava Budinski-Simendic ◽  
Jelena Milic ◽  
Ivana Cvetkovic ◽  
Radmila Radicevic ◽  
Ljiljana Korugic-Karasz ◽  
...  

Crosslinked samples based on poly(ethylene-co-propylene-co-2-ehylidene5-norbornene) EPDM rubber, carbon black as active filler and natural chalk as inactive filler were cured with sulphur. The content of carbon black was varied from 100 to 200 pph. The content of chalk was varied from 0 to 100 pph. The content of paraffin oil was also varied in some samples. The compounds were prepared by mixing ingredients on a laboratory two-roll mill. Vulcanizates were prepared by curing at 180?C. Various methods were used for the physical and mechanical characterizations. The dynamic mechanical properties of the elastomers were measured in the temperature range from -120 to 80?C.


Sign in / Sign up

Export Citation Format

Share Document