scholarly journals SOUND TRANSMISSION LOSS ACROSS A FINITE CLAMPED DOUBLE-LAMINATED COMPOSITE PLATE WITH POROELASTIC MATERIAL

2020 ◽  
Vol 57 (6A) ◽  
pp. 150
Author(s):  
Thanh Ngoc Pham

A theoretical study of sound transmission loss across a clamped double-laminated composite plate filled with poroelastic material is formulated. Biot’s theory is employed to describe wave propagation in elastic porous media. The two face composite plates are modeled as classical thin plates. By using the modal superposition theory, a double series solution for the sound transmission loss of the structure is obtained with the help of the Galerkin method. The analytical model is validated against previous experimental results of a single sound wave under normal incidence. The numerical results suggest that the density of poroelastic material, the type of composite materials and the composite plies arrangement have significant effects on the sound transmission loss of considered structure.

2020 ◽  
Vol 57 (6A) ◽  
pp. 150
Author(s):  
Thanh Ngoc Pham

A theoretical study of sound transmission loss across a clamped double-laminated composite plate filled with poroelastic material is formulated. Biot’s theory is employed to describe wave propagation in elastic porous media. The two face composite plates are modeled as classical thin plates. By using the modal superposition theory, a double series solution for the sound transmission loss of the structure is obtained with the help of the Galerkin method. The analytical model is validated against previous experimental results of a single sound wave under normal incidence. The numerical results suggest that the density of poroelastic material, the type of composite materials and the composite plies arrangement have significant effects on the sound transmission loss of considered structure.


2019 ◽  
Vol 57 (6) ◽  
pp. 749
Author(s):  
Pham Ngoc Thanh ◽  
Tran Ich Thinh

ABSTRACTSound transmission across a finite orthotropic laminated double-composite plate with enclosed air cavity on an infinite acoustic rigid baffle is investigated analytically. Sound velocity potential method combined with simply supported boundary conditions is used instead of traditional methods, has good scalability and is important for studies of acoustic vibration of structures. The sound transmission loss is calculated from the ratio of incident to transmitted acoustic powers. Specifically, the focus is placed on the effects of several key system parameters on sound transmission including the plate dimensions, the laminate configurations, the boundary conditions, and the composite materials are systematically examined.


2020 ◽  
Vol 54 (29) ◽  
pp. 4691-4708
Author(s):  
Aniket Chanda ◽  
Rosalin Sahoo

The analytical solution for static analysis of laminated composite plate integrated with piezoelectric fiber reinforced composite actuator is obtained using a recently developed Trigonometric Zigzag theory. The kinematic field consists of five independent field variables accommodating non-linear variation of transverse shear strains through the thickness of the laminated composite plate. The principle of minimum potential energy is adopted to derive the governing equations of equilibrium. Navier’s solution technique is employed to convert the system of coupled partial differential equations into a system of algebraic equations. The electric potential is assumed to vary linearly through the thickness of the piezoelectric layer. The analytical formulation also does not include voltage as an additional primary variable. The response in the form of deflection and stresses are obtained for smart composite plates subjected to electro-mechanical loads and compared with the elasticity solutions and available results reported by other researchers in the existing literature. The transverse shear stresses are accurately determined by an efficient post-processing technique of integrating the equilibrium equations of elasticity. Parametric studies on actuation in the response of the smart composite plate are also presented graphically in order to have a clear understanding of the static behavior.


Author(s):  
Rifat Arıko¨k ◽  
Zahit Mecitog˘lu

This paper presents the large deflection elastic analysis of the hand lay-up composite plates with different extensional and flexural modulus including geometric nonlinearity effects that are taken into account with the von Ka´rma´n large deflection theory of thin plates. Governing equations of the motion are derived by means of the virtual work principle. Then the Galerkin method is applied to reduce the nonlinear coupled differential equations into a nonlinear algebraic equation system. The MATLAB and MATHEMATICA software are used to solve the equation system. Because of the common nonuniformities in hand lay-up fabric laminates such as resin surface layers and unequal layer thickness, the flexural and extensional modulus of such laminated composites are different. By the way, since the bending and in-plane effects are together affect to the nonlinear behavior of a composite laminate, it should give more reliable results when using different flexural and extensional modulus in the analysis. In this study, the results of approximate analysis, ANSYS finite element analysis and experimental study are obtained and compared for a fully-clamped laminated composite plate subjected to a uniform pressure load. The material properties used in the analysis are determined tension and three-point bending tests.


2021 ◽  
Vol 263 (4) ◽  
pp. 2501-2509
Author(s):  
Zhengmin Hu ◽  
Kai Zhou ◽  
Yong Chen

In this paper, a semi-analytical model is proposed to deal with the vibroacoustic problems of laminated composite plates with surfaced-boned piezoelectric patches and subjected to general boundary condition using the modified Fourier series method. Based on Kirchhoff plate theory, the dynamic equation of the laminated composite plate is derived using Hamilton's principle. In order to satisfy general boundary conditions, the displacement solution of the plate is expressed in the form of two-dimensional Fourier series and serval auxiliary functions. The acoustic response of the laminated composite plate due to a harmonic concentrated force is obtained with the Rayleigh integral. Besides, the mass and stiffness contribution of the piezoelectric patch are taken into consideration in the present study. Through enough convergent studies and comparative studies, the convergence, accuracy and universality of the proposed method are validated. The developed semi-analytical model can be used for efficient and accurate analysis and design of laminated composite plates equipped with shunted piezoelectric patches. Finally, the effects of the resistor and inductor shunt damping circuits on the vibration and acoustic response is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chee Zhou Kam ◽  
Ahmad Beng Hong Kueh

A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.


Author(s):  
Hoang Lan Ton-That ◽  
Hieu Nguyen-Van

This paper deals with numerical analyses of laminated composite plate and shell structures using a new four-node quadrilateral flat shell element, namely SQ4C, based on the first-order shear deformation theory (FSDT) and a combined strain strategy. The main notion of the combined strain strategy is based on the combination of the membrane strain and shear strain related to tying points as well as bending strain with respect to cell-based smoothed finite element method. Many desirable characteristics and the enforcement of the SQ4C element are verified and proved through various numerical examples in static, frequency and buckling analyses of laminated composite plate and shell structures. Numerical results and comparison with other reference solutions suggest that the present element is accuracy, efficiency and removal of shear and membrane locking.


2017 ◽  
Vol 24 (19) ◽  
pp. 4492-4504 ◽  
Author(s):  
R Talebitooti ◽  
MR Zarastvand ◽  
HD Gohari

This study applies shear deformation shallow shell theory to inspect the acoustic behavior of laminated composite infinitely long doubly curved shallow shells subject to a radiating oblique plane sound wave. Herewith, a procedure is developed to investigate sound transmission loss through this shell, clarified as a ratio of incident power to transmitted power in the existence of mean flow. In a further step, displacements are developed as a linear combination of the thickness coordinate to designate an analytical solution based on shear deformation shallow shell theory. Consequently, an exact solution for sound transmission loss is brought forward by combining acoustic wave equations as a result of wave propagation through this shell with doubly curved shell equations of motion. Afterwards, the accuracy of the present formulation (shear deformation shallow shell theory) is determined by comparing the achieved results with those available in the literature and some assumptions associated with the geometric specifications of the plate are investigated. Finally, because of the remarkable achievement of the current formulation results in reduction of noise transmission into such structures, some effective parameters on sound transmission loss are used in numerical results, to solve this problem.


Sign in / Sign up

Export Citation Format

Share Document