scholarly journals CONICAL HOPPER DESIGN FOR MASS FLOW – CASE OF RED MUD

2016 ◽  
Vol 2 ◽  
pp. 120
Author(s):  
Júlio César Mendes Lobato ◽  
Fernando Pereira Mascarenhas ◽  
Alexandre Luiz Amarante Mesquita ◽  
André Luiz Amarante Mesquita
Keyword(s):  
Red Mud ◽  
Author(s):  
Jibing Lan ◽  
Yonghui Xie ◽  
Di Zhang

The traditional turbomachinery design systems are always based on the assumption of steady or quasi-steady flows. However, unsteady flows such as wake flow, separated flow and shedding vortices are the main factors inducing the excitation force on turbine blade which leads to high cycle fatigue failure of blade. In this paper, the three-dimensional, time dependent, Reynolds-Averaged Navier-Stokes (RANS) equations were resolved using a commercial program CFX based on finite volume method. The unsteady flow fields of three mass flow cases (design case, 110% design mass flow and 85% design mass flow) in a one-and-a-half stage axial turbine (stator/rotor/stator) were investigated in detail and then the unsteady aerodynamic force on the rotational blade was obtained. Frequencies of unsteady disturbances and excitation force factors were obtained by spectrum analysis. It can be seen clearly that the excitation factors at 110% mass flow case are larger than that at the design case. On the other side, the unsteady aerodynamic force on the rotational blade at 85% mass flow case is quite different from the design case. There are two peaks during a stator passing period and the dominate frequency of the tangential blade force is 6000Hz due to large amount of negative incidence angle. The 6000Hz component tangential aerodynamic force amplitude is 6.533N, which is 5.93 times of that at design case and 2.92 times of that at 110% mass flow case. Because of the large amplitude, the unsteady aerodynamic force at small mass flow case is necessary to be taken into account in the forced vibration analysis of blade.


10.14311/262 ◽  
2001 ◽  
Vol 41 (4-5) ◽  
Author(s):  
R. Menzies

This paper examines the flow in a diffusing s-shaped aircraft air intake using computational fluid dynamics (CFD) simulations. Diffusing s-shaped ducts such as the RAE intake model 2129 (M2129) give rise to complex flow patterns that develop as a result of the offset between the intake cowl plane and engine face plane. Euler results compare favourably with experiment and previous calculations for a low mass flow case. For a high mass flow case a converged steady solution was not found and the problem was then simulated using an unsteady flow solver. A choked flow at the intake throat and complex shock reflection system, together with a highly unsteady flow downstream of the first bend, yielded results that did not compare well with previous experimental data. Previous work had also experienced this problem and a modification to the geometry to account for flow separation was required to obtain a steady flow.RANS results utilising a selection of turbulence models were more satisfactory. The low mass flow case showed good comparison with experiment and previous calculations. A problem of the low mass flow case is the prediction of secondary flow. It was found that the SST turbulence model best predicted this feature. Fully converged high mass flow results were obtained. Once more, SST results proved to match experiment and previous computations the best. Problems with the prediction of the flow in the cowl region of the duct were experienced with the S-A and k-w models. One of the main problems of turbulence closures in intake flows is the transition of the freestream from laminar to turbulent over the intake cowl region. It is likely that the improvement in this prediction using the SST turbulence model will lead to more satisfactory results for both high and low mass flow rates.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

2010 ◽  
Vol 5 (3) ◽  
pp. 1-8
Author(s):  
Suchit B. Rai ◽  
◽  
Kailas L. Wasewar ◽  
Keyword(s):  
Red Mud ◽  

2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document