Bone Response to Early Orthodontic Loading of Endosseous Implants

2011 ◽  
Vol 37 (sp1) ◽  
pp. 87-95
Author(s):  
Umit Yavuz ◽  
Tugrul Kirtiloglu ◽  
Gokhan Acikgoz ◽  
Tamer Turk ◽  
Paolo Trisi

This study evaluated the clinical, radiographic, and histologic responses of tissues surrounding implants loaded with a heavy force of 500g for 20 weeks after a 1-week healing period. Unilateral mandibular and maxillary alveolar ridges in the premolar areas of a male dog and the bilateral mandibular alveolar ridges of a female dog were chosen for implant placement. The control implants (1 in the maxilla, 3 in the mandible) were placed in these quadrants after a 12-week healing period following extraction. The test implants (1 in the maxilla, 3 in the mandible) were implanted in the same quadrants after a 4-month osseointegration period of the control implants. Abutments were attached to the control and test implants after a 1-week healing period for the test implants. Superelastic nickel-titanium coil springs, producing a force of 500g (≈5 N), were activated between control and test implants for 20 weeks. Light microscopic assessment revealed that all implants were well integrated with the bone. Histologic analysis showed no definitive differences between test and control implants in the corticalization of bone trabeculae. The mean bone-implant contact values of the control implants for compression and tension sides were 55.99% and 64.04%, respectively. In the test implants, the bone-implant contact value was 57.27% for the compression side and 62.96% for the tension side. Potential clinical applications of these radiologic and histologic results include the possibility of minimizing the healing duration, even for high orthodontic forces, and the possibility of postorthodontic use of these implants as abutments for supporting prosthetic reconstruction.

2007 ◽  
Vol 33 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Sauro Grassi ◽  
Adriano Piattelli ◽  
Daniel S. Ferrari ◽  
Luciene C. Figueiredo ◽  
Magda Feres ◽  
...  

Abstract The aim of this preliminary study was to evaluate the influence of a sandblasted acid-etched surface on bone-implant contact percentage (BIC%) as well as the bone density in the threads area (BD%) in type 4 bone after 2 months of unloaded healing. Five subjects (mean age = 42.6 years) received 2 microimplants each during conventional implant surgery in the posterior maxilla. The microimplants with commercially pure titanium surface (machined) and sandblasted acid-etched surface served as the control and test surfaces, respectively. After a healing period of 2 months, the microimplants and the surrounding tissue were removed and prepared for ground sectioning and histomorphometric analysis. One microimplant with a machined surface was found to be clinically unstable at the time of retrieval. Histometric evaluation indicated mean BIC% was 20.66 ± 14.54% and 40.08 ± 9.89% for machined and sandblasted acid-etched surfaces, respectively (P = .03). The BD% was 26.33 ± 19.92% for machined surface and 54.84 ± 22.77% for sandblasted acid-etched surface (P = .015). Within the limits of this study, the data suggest that the sandblasted acid-etched implant surface presented a higher percentage of bone-implant contact compared with machined surfaces, under unloaded conditions in posterior maxilla after a healing period of 2 months.


Author(s):  
Bijan Mohammadi ◽  
Zahra Abdoli ◽  
Ehsan Anbarzadeh

Today, an artificial tooth root called a dental implant is used to replace lost tooth function. Treatment with dental implants is considered an effective and safe method. However, in some cases, the use of dental implants had some failures. The success of dental implants is influenced by several biomechanical factors such as loading type, used material properties, shape and geometry of implants, quality and quantity of bone around implants, surgical method, lack of rapid and proper implant surface's integration with the jaw bone, etc. The main purpose of functional design is to investigate and control the stress distribution on dental implants to optimize their performance. Finite element analysis allows researchers to predict the stress distribution in the bone implant without the risk and cost of implant placement. In this study, the stresses created in the 3A.P.H.5 dental implant's titanium fixture and screw due to the change in abutment angles tolerance have been investigated. The results show that although the fixture and the screw's load and conditions are the same in different cases, the change of the abutment angle and the change in the stress amount also made a difference in the location of maximum stress. The 21-degree abutment puts the fixture in a more critical condition and increases the chance of early plasticization compared to other states. The results also showed that increasing the abutment angle to 24 degrees reduces the stress in the screw, but decreasing the angle to 21 degrees leads to increased screw stress and brings it closer to the fracture.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Antonio Scarano ◽  
Adriano Piattelli ◽  
Alesandro Quaranta ◽  
Felice Lorusso

Background. Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods. Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results. Bone-implant contact (BIC) at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p=0.027), while SLActive displayed not significantly higher values at 30 (p=0.51) and 60 days (p=0.061). Conclusion. Both implant surfaces show an intimate interaction with newly formed bone.


2011 ◽  
Vol 37 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Etiene Andrade Munhoz ◽  
Augusto Bodanezi ◽  
Tania Mary Cestari ◽  
Rumio Taga ◽  
Osny Ferreira Junior ◽  
...  

Abstract This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey's test (α  =  .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.


2003 ◽  
Vol 82 (5) ◽  
pp. 377-381 ◽  
Author(s):  
T. Deguchi ◽  
T. Takano-Yamamoto ◽  
R. Kanomi ◽  
J.K. Hartsfield ◽  
W.E. Roberts ◽  
...  

The use of conventional dental implants for orthodontic anchorage is limited by their large size. The purpose of this study was to quantify the histomorphometric properties of the bone-implant interface to analyze the use of small titanium screws as an orthodontic anchorage and to establish an adequate healing period. Overall, successful rigid osseous fixation was achieved by 97% of the 96 implants placed in 8 dogs and 100% of the elastomeric chain-loaded implants. All of the loaded implants remained integrated. Mandibular implants had significantly higher bone-implant contact than maxillary implants. Within each arch, the significant histomorphometric indices noted for the “three-week unloaded” healing group were: increased labeling incidence, higher woven-to-lamellar-bone ratio, and increased osseous contact. Analysis of these data indicates that small titanium screws were able to function as rigid osseous anchorage against orthodontic load for 3 months with a minimal (under 3 weeks) healing period.


2012 ◽  
Vol 38 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Mansour Rismanchian ◽  
Bijan Movahedian Attar ◽  
Sayed Mohammad Razavi ◽  
Ali Nasir Shamsabad ◽  
Majid Rezaei

The endeavors to shorten implant treatment time have led to the concept of immediate loading. This research was designed to compare the immediate loading and the 2-staged methods on implant placement from a clinical, histological, and histomorphometric standpoint. Three months postextraction of 12 premolars of 3 dogs, 12 implants were inserted. Bone-implant contact (BIC), implant stability quotient (ISQ), the bone type in a 2-mm periphery around the implant, and the marginal bone loss (MBL) were recorded for unloaded implants (n  =  6) and immediately loaded ones (n  =  6). BIC, ISQ, MBL in the mesial, and the bone types around the implants were not significantly different in the 2 groups. The distal MBL was higher in the immediately loaded group. Immediate loading does not appear to be perilous for osseointegration, BIC, or new bone type around implants.


2021 ◽  
Vol 11 (2) ◽  
pp. 723
Author(s):  
Amani M. Basudan ◽  
Marwa Y. Shaheen ◽  
Abdurahman A. Niazy ◽  
Jeroen J.J.P. van den Beucken ◽  
John A. Jansen ◽  
...  

The installation of dental implants has become a common treatment for edentulous patients. However, concern exists about the influence of osteoporosis on the final implant success. This study evaluated whether an ovariectomy (OVX)-induced osteoporotic condition, induced eight weeks postimplantation in a rat femoral condyle, influences the bone response to already-integrated implants. The implants were inserted in the femoral condyle of 16 female Wistar rats. Eight weeks postimplantation, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). Fourteen weeks later, animals were sacrificed, and implants were used for histological and histomorphometric analyses. A significant reduction in the quantity and quality of trabecular bone around dental implants existed in OVX rats in comparison to the SHAM group. For histomorphometric analysis, the bone area (BA%) showed a significant difference between OVX (34.2 ± 4.3) and SHAM (52.6 ± 12.7) groups (p < 0.05). Bone–implant contact (BIC%) revealed significantly lower values for all implants in OVX (42.5 ± 20.4) versus SHAM (59.0 ± 19.0) rats. Therefore, induction of an osteoporotic condition eight weeks postimplantation in a rat model negatively affects the amount of bone present in close vicinity to bone implants.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Antonio Scarano

Background. One of the most problematic regions for endosseous implants is the posterior maxilla, not only having poor bone density, but also lacking adequate vertical height as a result of sinus pneumatization. The purpose of the present study was a radiologic, histological, and histomorphometrical evaluation, in humans, of specimens retrieved from sinuses augmented with decellularized bovine compact particles, after a healing period of 6 months. Methods. Four patients, with atrophic resorbed maxillas, underwent a sinus lift augmentation with decellularized bovine compact bone from bovine femur. The size of the particles used was 0.25–1 mm. A total of four grafts and 5 biopsies were retrieved and processed to obtain thin ground sections with the Precise 1 Automated System. Results. The mean volume after graft elevation calculated for each of the 4 patients was 2106 mm3 in the immediate postoperative period (5–7 days), ranging from 1408.8 to 2946.4 mm3. In the late postoperative period (6 months) it was 2053 mm3, ranging from 1339.9 to 2808.9 mm3. Histomorphometry showed that newly formed bone was 36±1.6% and marrow spaces were 34±1.6%, while the residual graft material was 35±1.4%. Conclusion. In conclusion, based on the outcome of the present study, Re-Bone® can be used with success in sinus augmentation procedures and 6 months are considered an adequate time for maturation before implant placement.


Sign in / Sign up

Export Citation Format

Share Document