Eight-Year Results of Site Retention of Anorganic Bovine Bone and Anorganic Bovine Matrix

2013 ◽  
Vol 39 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Marco Degidi ◽  
Vittoria Perrotti ◽  
Adriano Piattelli ◽  
Giovanna Iezzi

The long-term fate of some biomaterials is still unknown, and the reports present in the literature are not conclusive as to whether these biomaterials are resorbed over time or not. Different reports can be found with regard to the resorption behavior of anorganic bovine bone (ABB). The aim of the present study was to provide a comparative histological and histomorphometrical evaluation, in the same patient, of 2 specimens retrieved from a sinus augmented with ABB and with anorganic bovine matrix added to a cell-binding peptide (PepGen P-15), respectively, after a healing period of 6 months and after 8 years of implant loading, to evaluate the resorption of both biomaterials. A unilateral sinus augmentation procedure with ABB (50%) and with PepGen P-15 (50%) was performed in a 54-year-old male patient. Two titanium dental implants with a sandblasted and acid-etched surface were inserted after 6 months. During this procedure, 2 tissue cores were retrieved from the sinus with a trephine, before implant insertion. After an additional 6 months, a fixed prosthetic restoration was fabricated. One of these implants, after a loading period of 8 years, fractured in the coronal portion and was removed. Both specimens, one retrieved after a 6-month healing period and the other after an 8-year loading period, were treated to obtain thin ground sections. In the 6-month specimen, the histomorphometry showed that the percentage of newly formed bone was 27.2% ± 3.6%, marrow spaces 35.6% ± 2.3%, residual ABB particles 25.1% ± 1.2%, and residual PepGen P-15 particles 12.1% ± 2.2%. In the 8-year specimen, the histomorphometry showed that the percentage of newly formed bone was 51.4% ± 4.8%, marrow spaces 40% ± 7.1%, residual ABB particles 6.2% ± 0.7%, and residual PepGen P-15 particles 2.4% ± 0.5%. Both biomaterials underwent significant resorption over the course of this study.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Claudio Stacchi ◽  
Teresa Lombardi ◽  
Francesco Oreglia ◽  
Andrea Alberghini Maltoni ◽  
Tonino Traini

The presence of vital bone after maxillary sinus augmentation is crucial to enhance the quality of bone-implant interface, ensuring predictable long-term results. The aims of this RCT with split-mouth design were the histologic and histomorphometric comparison of two different biomaterials in sinus elevation after 6 months of healing and the evaluation of the clinical outcomes of implants inserted in the augmented areas after 12 months of prosthetic loading. Twenty-eight patients (10 females, 18 males) were treated with bilateral sinus floor elevation with lateral approach. Pure sintered nanohydroxyapatite (NHA) and anorganic bovine bone (ABB) were used as test and active control, respectively. After six months, 52 bone biopsies were harvested from 26 patients, and 107 implants were inserted in the augmented areas. Histomorphometry showed that, in the two groups, vital bone percentages were 34.9±15% (NHA) and 38.5±17% (ABB) (p=0.428), marrow spaces percentages were 44.5±18% (NHA) and 43.5±23% (ABB) (p=0.866), and residual graft percentages were 20.6±13% (NHA) and 22.3±12% (ABB) (p=0.638). After 6 months of healing, no statistically significant difference was present in histomorphometric outcomes between NHA and ABB groups. Implant survival rate in NHA group after 12 months of loading was 96.4%, showing no statistically significant differences with ABB group.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5520
Author(s):  
Giuseppe Grasso ◽  
Stefano Mummolo ◽  
Sara Bernardi ◽  
Davide Pietropaoli ◽  
Giuseppe D’Ambrosio ◽  
...  

This study aimed to investigate the histological features of deproteinized equine bone mineral (DEBM) and anorganic bovine bone (ABB) after human sinus augmentation with the lateral approach. Twenty-three sinus augmentations were performed in 16 patients (male: 10/female: 6) using DEBM or ABB in a randomized fashion. Healing took place over the next 6 months. Bone core biopsies (N = 23) were obtained for each subject prior to placing the dental implants. The biopsies were processed for both histological descriptions and histomorphometric analysis. Statistical analyses were applied as appropriate, defining statistical significance as p < 0.05. Core bone biopsies revealed no differences in terms of newly formed bone between groups, or differences in terms of tissue inflammation. Both DEBM and ABB appear to be suitable biomaterials for bone augmentation in sinus lift surgery in the short term. However, dedicated studies are required to confirm these results and their stability in the long term.


2018 ◽  
Vol 9 (3) ◽  
pp. 48 ◽  
Author(s):  
Renzo Guarnieri ◽  
Fabrizio Belleggia ◽  
Patricia DeVillier ◽  
Luca Testarelli

Anorganic bovine bone mineral matrix (ABBMM) has been reported to have osteoconductive properties and no inflammatory or adverse responses when used as grafting material in sinus augmentation procedures. However, controversy remains in regard to degradation rate of ABBMM. The aim of this study was to histologically and histomorphometrically evaluate the degradation of ABBMM in human bone samples obtained in one patient 24 months after sinus augmentation. Materials and Methods: The histologic and histomorphometric analysis was performed by means of light microscopy in three specimens harvested from the same patient, Results: After 24 months the tissue pattern appeared to be composed of residual particles, some in close contact with the newly formed bone, others separated by translucent areas and osteoid tissues. Newly-formed bone presented different levels of maturation and numerous osteocytes, with greater numbers in bone closer to the grafted particles (27.3% vs. 11.2%, p < 0.05). The histomorphometric analysis showed mean values of 40.84% newly-formed bone, 33.58% residual graft material, 23.84% marrow spaces, and 1.69% osteoid tissue, Conclusions: Even though ABBMM underwent considerable resorption, a great amount of residual grafting material was still present after two years of healing following sinus augmentation. This study confirms that the bovine grafts can be classified as long-term degradation materials.


2007 ◽  
Vol 78 (5) ◽  
pp. 955-961 ◽  
Author(s):  
Tonino Traini ◽  
Pascal Valentini ◽  
Giovanna Iezzi ◽  
Adriano Piattelli

2021 ◽  
Vol 10 (7) ◽  
pp. 1360
Author(s):  
Won-Bae Park ◽  
Ji-Young Han ◽  
Kyung Lhi Kang

Maxillary sinus floor augmentation (MSFA) is widely used and considered a predictable procedure for implant placement. However, the influence of MSFA on implant survival and marginal bone loss (MBL) is still inconclusive. The purpose of this retrospective observational study is to evaluate the long-term genuine influence of MSFA on the survival and MBL of implants by comparing those with and without MSFA only in maxillary molars within the same patients. Thirty-eight patients (28 male and 10 female), with a total of 119 implants, received implants with and without MSFA, and were followed up for 5.8 to 22 years. Patient- and implant-related factors were assessed with a frailty model for implant survival and with generalized estimation equations (GEE) for MBL around the implant. No variables showed a statistical significance for implant failure in the frailty model. In GEE analysis for MBL, MSFA did not show any statistical significance. In conclusion, MSFA demonstrated no significant influence on implant failure and MBL in posterior maxilla in this study.


2007 ◽  
Vol 85 (5) ◽  
pp. 552-562 ◽  
Author(s):  
Brian J. Hillier ◽  
Victor D. Vacquier

Amassin-1 mediates a rapid cell adhesion that tightly adheres sea urchin coelomocytes (body cavity immunocytes) together. Three major structural regions exist in amassin-1: a short β region, 3 coiled coils, and an olfactomedin domain. Amassin-1 contains 8 disulfide-bonded cysteines that, upon reduction, render it inactive. Truncated forms of recombinant amassin-1 were expressed and purified from Pichia pastoris and their disulfide bonding and biological activities investigated. Expressed alone, the olfactomedin domain contained 2 intramolecular disulfide bonds, existed in a monomeric state, and inhibited amassin-1-mediated clotting of coelomocytes by a calcium-dependent cell-binding activity. The N-terminal β region, containing 3 cysteines, was not required for clotting activity. The coiled coils may dimerize amassin-1 in a parallel orientation through a homodimerizing disulfide bond. Neither amassin-1 fragments that were disulfide-linked as dimers or that were engineered to exist as dimers induced coelomocytes clotting. Clotting required higher multimeric states of amassin-1, possibly tetramers, which occurred through the N-terminal β region and (or) the first segment of coiled coils.


2008 ◽  
Vol 34 (4) ◽  
pp. 367-372 ◽  
Author(s):  
P. Ciba ◽  
S. Schicktanz ◽  
E. Anders ◽  
E. Siegl ◽  
A. Stielow ◽  
...  

1988 ◽  
Vol 107 (5) ◽  
pp. 1835-1843 ◽  
Author(s):  
R K Kamboj ◽  
L M Wong ◽  
T Y Lam ◽  
C H Siu

At the aggregation stage of Dictyostelium discoideum development, a cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate the EDTA-resistant type of cell-cell adhesion via homophilic interaction (Siu, C.-H., A. Cho, and A. H. C. Choi. 1987. J. Cell Biol. 105:2523-2533). To investigate the structure-function relationships of gp80, we have isolated full length cDNA clones for gp80 and determined the DNA sequence. The deduced structure of gp80 showed three major domains. An amino-terminal globular domain composed of the bulk of the protein is supported by a short stalk region, which is followed by a membrane anchor at the carboxy terminus. Structural analysis suggested that the cell-binding domain of gp80 resides within the globular domain near the amino terminus. To investigate the relationship of the cell-binding activity to this region of the polypeptide, three protein A/gp80 (PA80) gene fusions were constructed using the expression vector pRIT2T. These PA80 fusion proteins were assayed for their ability to bind to aggregation stage cells. Binding of 125I-labeled fusion proteins PA80I (containing the Val123 to Ile514 fragment of gp80) and PA80II (Val123 to Ala258) was dosage dependent and could be inhibited by precoating cells with the cell cohesion-blocking mAb 80L5C4. On the other hand, there was no appreciable binding of PA80III (Ile174 to Ile514) to cells. Reassociation of cells was significantly inhibited in the presence of PA80I or PA80II. In addition, 125I-labeled PA80II exhibited homophilic interaction with immobilized PA80I, PA80II, or gp80. The results of these studies lead to the mapping of a cell-binding domain in the region between Val123 and Leu173 of gp80 and provide direct evidence that the cell-binding activity of gp80 resides in the protein moiety.


Sign in / Sign up

Export Citation Format

Share Document