Fungal Entomopathogens for Adult Mosquito Control – A Look at the Prospects

2006 ◽  
Vol 17 (6) ◽  
pp. 257-259 ◽  
Author(s):  
Bart Knols ◽  
Matt Thomas
2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Michael Olarewaju Akintan ◽  
Joseph Onaolapo Akinneye ◽  
Oluwatosin Betty Ilelakinwa

Abstract Background Mosquitoes are vectors of parasitic diseases such as malaria, lymphatic filariasis, yellow fever, and dengue fever among others. They are well known as public enemies for their noise nuisance, biting annoyance, sleeplessness, allergic reactions, and diseases transmission during the biting and feeding activities. This then necessitate the search for insecticides of plant origin which are bio-degradable, non-toxic, and readily available for man use. Result This study, evaluated the fumigant efficacy of the powder of P. alliacea to control the adult stage of Culex mosquito. Powder of Petiveria alliacea were administered at different dose of (1 g, 2 g, 3 g, 4 g, and 5 g), respectively. Result obtained shows the fumigant effect of the powder were effective with percentage mortality of 18.33–60.00% for the leaf powder and 23.30–71.60% for the root powder within 2 h post-treatment period (P < 0.05). The synergistic effect of the leaf and root powder was also investigated. The lethal dosage (LD50) of the leaf, root, and synergistic effect of leaf and root bark powder required to kill 50% of the adult Culex quinquefasciatus was 3.76 g, 2.86 g, and 2.63 g, respectively. However, 25.06 g, 15.25 g, and 12.94 g of the leaf, root, and leaf and root powder were required to kill 90% (LD90) after a 2-h exposure period. Conclusion These finding suggested P. alliacea powder could be a good source of insecticide which may be used for the production of biopesticides. The present findings have important implications in the practical control of adult mosquito by using botanical insecticides. These plant powders are easy to prepare, inexpensive, and safe for use in mosquito control.


2020 ◽  
Author(s):  
Rajendra Maharaj ◽  
Vishan Lakan ◽  
Kiash Maharaj

Abstract Background: Although great strides have been made in controlling malaria, the disease is of significant public health importance. Historically, efforts to control the vector has concentrated on adult vector control targeting the female Anopheles mosquitoes. As there is now a focus on eliminating residual malaria from KwaZulu-Natal, new strategies are being investigated to increase the impact of malaria elimination strategies. Greater attention is now being given to larval control, as a complementary measure to indoor residual spraying. However, there is a large gap in knowledge of the bionomics of the larval stages of this mosquito vector of malaria in South Africa. In order to focus on both larval and adult mosquito control methods, larval development and the reproductive stages of the vector were investigated since these variables influences our ability to impact mosquito populations through larval control. This study was therefore conducted to determine the peak eruption times and the emergent sex ratios, as well as the peak egg oviposition time in order to attack the mosquito when it is at its most vulnerable and when control interventions will have the most impact.Results: Oviposition studies showed two peaks corresponding with late evening and again just before dawn. Most eggs were also laid in the first half of the night (18h00 – midnight). Most mosquitoes erupted just after sunset and the sex ratios showed that twice as many females as males emerged. Females readily took a bloodmeal after oviposition or just after erupting. Hatch rate to viable first instar larvae was 74.5%.Conclusions: The results of this study have provided information as to when interventions would be most effective in controlling mosquito populations and have provided information that highlights the value of larval control as a complementary measure to adult mosquito control. The most vulnerable stages of the female Anopheles arabiensis are when they have just emerged or when they have just oviposited. Vector control strategies should be designed to target these vulnerable stages at the breeding sites in order to have maximum impact.


2019 ◽  
Vol 478 ◽  
pp. 139-152 ◽  
Author(s):  
Abhishek Senapati ◽  
Tridip Sardar ◽  
Krishnendra Sankar Ganguly ◽  
Krishna Sankar Ganguly ◽  
Asis Kumar Chattopadhyay ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Panpan Wu ◽  
Xiaowen Tang ◽  
Rongchao Jian ◽  
Jiahao Li ◽  
Maoyu Lin ◽  
...  

Two essential oils were isolated from discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) by hydro-distillation with good yield (0.044% for perfume lemon and 0.338% for leaves). Their biological activities were evaluated against five selected bacterial strains and Aedes albopictus (Ae. albopictus, Diptera: Culicidae). Chemical composition indicated that both essential oils were rich in essential phytochemicals including hydrocarbons, monoterpenes and sesquiterpene. These constituents revealed some variability among the oils displaying interesting chemotypes (R)-(+)-limonene (12.29–49.63%), citronellal (5.37–78.70%) and citronellol (2.98–7.18%). The biological assessments proved that the two essential oils had similar effect against bacterial (inhibition zones diameter ranging from 7.27 ± 0.06 to 10.37 ± 0.15 mm; MICs and MBCs ranging from 1.6 to 6.4 mg/mL); against Ae. albopictus larvae (LC50 ranging from 384.81 to 395.09 ppm) and adult mosquito (LD50 ranging from 133.059 to 218.962 μg/cm2); the activity of the two chemotypes ((R)-(+)-limonene and citronellal): larvae (LC50 ranging from 267.08 to 295.28 ppm), which were all presented in dose-dependent manners. Through this work, we have showcased that recycling and reusing of agriculture by-products, such as discarded perfume lemon and leaves can produce eco-friendly alternatives in bacterial disinfectants and mosquito control product.


2020 ◽  
Vol 10 (4) ◽  
pp. 1353-1360 ◽  
Author(s):  
Vanessa M. Macias ◽  
Sage McKeand ◽  
Duverney Chaverra-Rodriguez ◽  
Grant L. Hughes ◽  
Aniko Fazekas ◽  
...  

Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control (Receptor-mediated Ovary Transduction of Cargo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles, ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.


Author(s):  
Abdullah A Alomar ◽  
Barry W Alto ◽  
Edward D Walker

Abstract Sugar is an essential source of nutrition for adult mosquitoes to acquire energy. Toxic sugar bait (TSB) provides a promising method for mosquito control by incorporating toxins into artificial sources of sugar (i.e., toxic baits) presented to wild populations. Spinosyns comprise a family of bacterial secondary metabolites with a unique mode of action against the insect nervous system, an appealing environmental safety profile, and potential for incorporation into sugar baits. This research evaluated acute and subacute effects of spinosad (spinosyns A and D) and spinetoram (spinosyns J and L) in sugar meals on survival, fecundity, and fertility of Aedes aegypti and Aedes albopictus. Acute toxicity of spinosyns doubled from 24 to 48 h of assessment, revealing a relatively slow and cumulative action of the formulated spinosyns. Median lethal concentrations at 48 h were lower for spinetoram than for spinosad, lower for Ae. albopictus than Ae. aegypti, and lower for males than females. When exposed to subacute LC50 concentrations of spinosad and spinetoram for 24 h, survival of males and females of both species was diminished compared with controls, fecundity of females was increased, but fertility as measured by hatch rate of eggs was decreased. The formulations may have increased the nutritive value of the sugar meals thereby boosting fecundity, while toxifying embryos, reducing fertility. The inclusion of subacute effects of spinosyns allows assessment of the broader consequences of TSB for adult mosquito control.


2021 ◽  
Vol 68 (1) ◽  
pp. 92-96
Author(s):  
Dena Autry

Mosquito Control programs are utilizing cost-effective long term autocidal gravid traps because they minimize labor needs while targeting the gravid population of container-breeding mosquitoes. This field study compared the efficacy of the In2Care Mosquito Trap and the Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO). The study consisted of two control and two treatment sites, and each treatment site had either 100 In2Care Mosquito Traps or 100 CDC-AGOs. Aedes aegypti populations in each site were monitored using Biogent (BG) Sentinel 2 mosquito traps and ovitraps. Analysis of pre- and post-treatment data indicated no significant difference in adult mosquito populations detected by BG traps from either the In2Care or CDC-AGO sites. However, the mean number of eggs collected by ovitraps showed significant reduction in both trap type treated areas posttreatment, compared to pre-treatment. Furthermore, the mean number of egg collections from the In2Care mosquito trap treated area was much less than the collection from the CDC-AGO trap treated area post-treatment.


mSphere ◽  
2021 ◽  
Author(s):  
Patil Tawidian ◽  
Kerri L. Coon ◽  
Ari Jumpponen ◽  
Lee W. Cohnstaedt ◽  
Kristin Michel

The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens.


2021 ◽  
Vol 15 (8) ◽  
pp. e0009438
Author(s):  
Isik Unlu ◽  
Ary Faraji ◽  
Nicholas Indelicato ◽  
James R. McNelly

Background Aedes (Stegomyia) albopictus (Skuse) impacts human outdoor activity because of its aggressive biting behavior, and as a major vector of mosquito-borne diseases, it is also of public health importance. Although most mosquito species exhibit crepuscular activity by primarily host seeking at dawn and dusk, Ae. albopictus has been traditionally characterized as a diurnal or day-biting mosquito. With the global expansion and increased involvement of Ae. albopictus in mosquito-borne diseases, it is imperative to elucidate the diel activity of this species, particularly in newly invaded areas. Methodology and principal findings Human sweep netting and carbon dioxide-baited rotator traps were used to evaluate the diel activity of Ae. albopictus in two study sites. Both trapping methods were used in New Jersey’s Mercer County, USA (temperate/urban), while only human sweep netting was used in Florida’s Volusia County, USA (subtropical/suburban). Human sweep netting was performed to determine adult mosquito activity at Sunrise, Solar Noon, Sunset, and Lunar Midnight. Because New Jersey is in a temperate area, diel activity was investigated during the early season (3–19 July), peak season (25 July-19 September), and late season (22 September- 22 October). Aedes albopictus showed the highest activity during peak and late seasons at Solar Noon (P < 0.05). At Sunrise and Sunset during the peak season, Ae. albopictus activity was similar. Lunar Midnight activity was significantly lower than Sunrise and Solar Noon (P < 0.05) but was similar to that of Sunset. In the late season, the highest activity was observed during Solar Noon while the least activity was observed during Sunrise and Lunar Midnight (P<0.05). Bottle rotator traps used in conjunction with the human sweep net technique exhibited similar results. Seasonal activity was not differentiated in Florida due to the consistent subtropical climate. The highest adult activity was observed at Sunrise using human sweep netting, but it was not significantly different from Solar Noon and Sunset. The lowest adult activity was observed at Lunar Midnight; however, it was not significantly different from Solar Noon and Sunset. These results provide evidence that the diel activity of Ae. albopictus, contrary to the common perception of its diurnal activity, is much more varied. Conclusion/Significance Involvement of Ae. albopictus in the transmission of debilitating mosquito-borne pathogens such as chikungunya, dengue, and Zika virus, coupled with its affinity to thrive in human peridomestic environments, substantiates that our findings have global implications in areas where Ae. albopictus populations established. It also highlights the importance of behavioral studies of vector species which will not only help mosquito control professionals plan the timing of their control efforts but also provides empirical evidence against conventional wisdoms that may unjustly persist within public health stewards.


Sign in / Sign up

Export Citation Format

Share Document