scholarly journals Genetic Variation and Microevolution at Allozyme Loci in Eastern Mediterranean Populations of the Geometrid Moth Cyclophora Puppillaria (Lepidoptera)

2016 ◽  
Vol 1 (44) ◽  
pp. 107-107
Author(s):  
Ergi Deniz Özsoy ◽  
Feza Can Cengiz ◽  
Murat Yılmaz
Author(s):  
Alba Rey-Iglesia ◽  
Philippe Gaubert ◽  
Gonçalo Espregueira Themudo ◽  
Rosa Pires ◽  
Constanza De La Fuente ◽  
...  

Abstract The Mediterranean monk seal Monachus monachus is one of the most threatened marine mammals, with only 600–700 individuals restricted to three populations off the coast of Western Sahara and Madeira (North Atlantic) and between Greece and Turkey (eastern Mediterranean). Its original range was from the Black Sea (eastern Mediterranean) to Gambia (western African coast), but was drastically reduced by commercial hunting and human persecution since the early stages of marine exploitation. We here analyse 42 mitogenomes of Mediterranean monk seals, from across their present and historical geographic ranges to assess the species population dynamics over time. Our data show a decrease in genetic diversity in the last 200 years. Extant individuals presented an almost four-fold reduction in genetic diversity when compared to historical specimens. We also detect, for the first time, a clear segregation between the two North Atlantic populations, Madeira and Cabo Blanco, regardless of their geographical proximity. Moreover, we show the presence of historical gene-flow between the two water basins, the Atlantic Ocean and the Mediterranean Sea, and the presence of at least one extinct maternal lineage in the Mediterranean. Our work demonstrates the advantages of using full mitogenomes in phylogeographic and conservation genomic studies of threatened species.


Genetics ◽  
1979 ◽  
Vol 92 (3) ◽  
pp. 1005-1021
Author(s):  
Charles Mitter ◽  
Douglas J Futuyma

ABSTRACT By surveying variation at allozyme loci in several phytophagous lepidopteran species (Geometridae), we have tested two hypotheses about the relationship of genetic variation to environmental heterogeneity: (1) that allozyme polymorphisms may exist because of associations between genotypes and "niches" (different host plants, in this instance), and (2) that the overall genetic variation of a species is correlated with environmental heterogeneity (or breadth of the species' overall ecological niche) .—Genetic differentiation among samples of oligophagous or polyphagous species taken from different host species was observed in one of three species, at only one of seven polymorphic loci. The data thus provide no evidence for pronounced genetic sub-structuring, or "host race" formation in these sexually reproducing species, although host plant-genotype associations in a parthenogenetic moth give evidence of the potential for diversifying selection.—In a comparison of allozyme variation in polyphagous ("generalized") and oligophagous ("specialized") species, heterozygosity appeared to be higher in specialized species, at all polymorphic loci but one. I t is possible that this unexpected result arises from a functional relation between breadth of diet and genetic variation.


2021 ◽  
Author(s):  
Débora Silva Raposo ◽  
Raphaël Morard ◽  
Christiane Schmidt ◽  
Michal Kucera

<p>In recent decades the “Lessepsian” migration caused a rapid change in the marine community composition due to the invasion of alien species from the Red Sea into the Mediterranean Sea. Among these invaders is the large benthic foraminifera <em>Amphistegina lobifera</em>, a diatom-bearing species that recently reached the invasion front in Sicily. There it copes with colder winters and broader temperature than in its original source, the Red Sea. It is not yet known how (or if) the population from the invasion front has developed adaptation to this new thermal regime. Understanding the modern marine invasive patterns is a crucial tool to predict future invasive successes in marine environments. Therefore, in this study we aim to evaluate the physiological responses to cold temperatures of <em>A. lobifera</em> populations at three different invasive stages: source (Red Sea), early invader (Eastern Mediterranean) and invasion front (Sicily). For this, we conducted a culturing experiment in which we monitored the responses of the foraminifera (growth, motility) to temperatures of 10, 13, 16, 19°C + control (25°C) over four weeks. To address what is the role of their endosymbionts in the adaptation process, we also monitored their photosynthetic activity (Pulse Amplitude Modulation - PAM fluorometer) during the experiment. The growth rate of the foraminifera was reduced for all populations below 19°C as well as the motility, reduced until 16°C and dropping to zero below 13°C. The response of the endosymbionts was however different. There was a reduced photosynthetic activity of the Red Sea and Eastern Mediterranean populations at colder temperatures observed by the lower maximum quantum yield (Fv:Fm) and effective quantum yield (Y(II)), when compared to their initial levels and to the other treatments. In the meantime, the endosymbionts of the Sicily population stood out with the highest photosynthetic activity (Fv:Fm and Y(II)) in the treatments bellow 13 °C (P < 0.05). In conclusion, we observed that while the host responses were similar between the three populations, the endosymbionts from the invasion front population shows the best performance at colder temperatures. This suggests that the photo-symbiosis has an important role in adaptation, most likely being a key factor to the success of past and future migrations.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Lara Nasreddine ◽  
Reem Akika ◽  
Aurelie Mailhac ◽  
Hani Tamim ◽  
Nathalie Zgheib

In contrast to the large number of genetic studies on obesity, there has been significantly less nutrigenetics investigation of the interaction between diet and single nucleotide polymorphisms (SNPs) in obesity, especially within Eastern Mediterranean populations. The aim of this study was to evaluate the potential interactions between three candidate SNPs, namely, rs1558902 and rs9939609 in the fat mass and obesity (FTO) gene and the rs7903146 variant of the Transcription factor 7 like 2 (TCF7L2) gene, and macronutrient intake with regard to obesity, body fat, and muscle composition. Three hundred and eight healthy Lebanese adults were included in this study. Data collection included a questionnaire for demographics and lifestyle in addition to a detailed dietary assessment using a culture-specific 80-item semi-quantitative food frequency questionnaire. This was coupled with anthropometric measurements and peripheral blood withdrawal for DNA and genotyping using Taqman allele discrimination assays. The two FTO candidate SNPs were not associated with risk of obesity in this population sample, yet there was a trend, though not a significant one, towards lower muscle mass among carriers of the risk allele of either FTO SNPs. To our knowledge, these results have not been previously reported. As for the TCF7L2 rs7903146 variant, results were congruent with the literature, given that individuals who were homozygous for the risk allele had significantly higher body mass index (BMI) and body fat despite lower intakes of saturated fat. Similar interactions, though not significant, were shown with muscle mass, whereby individuals who were homozygous for the risk allele had lower muscle mass with higher intakes of saturated fat, a result that, to our knowledge, has not been previously reported.


1985 ◽  
Vol 27 (2) ◽  
pp. 224-232 ◽  
Author(s):  
L. R. Rhomberg ◽  
S. Joseph ◽  
R. S. Singh

Patterns of geographic and seasonal genetic variation were assessed in natural populations of cyclically parthenogenetic rose aphids Macrosiphum rosae (L.). Nine populations were studied for a red–green colour morph and 30 allozyme loci (20 coding for enzymes and 10 for abundant proteins). Genetic variation was found at 5 of 20 enzyme loci (20%); all 10 abundant proteins proved monomorphic. The average heterozygosity was 4.3%. At some polymorphic loci genotypic frequencies showed significant deviations from Hardy–Weinberg proportions. Six local populations from Hamilton, Ontario, were studied for seasonal variation at the colour locus and at two polymorphic esterase loci (Est-2 and Est-4). All three loci showed large changes in genotypic frequencies over the season during the asexual cycle, but only for Est-4 were changes consistent among populations. This locus undergoes a regular seasonal cycle, the directional changes during the asexual phase presumably being balanced by changes during the sexual phase. The frequencies of three-locus genotypes within each locality fluctuated dramatically over the course of a season, reflecting the domination of local infestations by a few particularly successful clones. We speculate that because of such clonal competition followed by extensive migration, much of the selectively neutral variation is purged from aphid populations. The remaining polymorphic loci, which are mostly di- or tri-allelic, are subject to balancing natural selection at the gene or at closely linked loci. The Est-4 in rose aphids is an example of such a selectively maintained polymorphism.Key words: aphids, allozyme variation, seasonal variation, parthenogenesis, clonal selection, population structure.


Zootaxa ◽  
2009 ◽  
Vol 2071 (1) ◽  
pp. 1-20 ◽  
Author(s):  
SABINE STÖHR ◽  
EMILIE BOISSIN ◽  
ANNE CHENUIL

Ophioderma longicauda is a large brittlestar species, common in the Mediterranean Sea and spread across the subtropical-tropical eastern Atlantic Ocean. Recently, a morphologically similar brooding form of O. longicauda was discovered in the eastern Mediterranean Sea. The brooding period is restricted to late May and early June and the largest females brood over 1,000 juveniles, all of the same ontogenetic stage. Brooders differ from non-brooding O. longicauda in body colour (dominated by green instead of red), gonad colour (in alcohol white instead of oliveto reddish-brown) and size (up to 17 mm disk diameter instead of 30 mm). These characters overlap between both forms though. Molecular data (mt-COI sequences) lend weak support to the existence of two separate species, but suggest that if a split occurred it is recent and both forms interbreed. Alternatively, the eastern Mediterranean populations could represent a poecilogonous subgroup of O. longicauda.


2004 ◽  
Vol 34 (12) ◽  
pp. 2611-2617 ◽  
Author(s):  
Gancho T Slavov ◽  
Peter Zhelev

Genetic variation of 17 populations of Pinus mugo Turra was studied using 10 polymorphic allozyme loci. Polymorphism and gene diversity in these populations were comparable to mean values for gymnosperm species, but slightly lower than in pines with large and continuous ranges. We did not find significant interpopulation differentiation (FST = 0.041) or isolation by distance, suggesting that gene flow might be extensive or that the time elapsed since the species range became fragmented has been too short for genetic differentiation to arise via genetic drift. We detected moderate and statistically significant levels of inbreeding (mean FIS = 0.252) for all loci in all populations. Although there are many possible explanations for this nonequilibrium population structure, we propose that the main reasons for its ubiquity are the peculiar growth form and reproductive biology of P. mugo, which promote excessive near-neighbor pollinations. Populations in Vitosha Mountain and western Stara Planina had the highest levels of inbreeding and the lowest observed heterozygosities. All populations in these mountains are small and isolated, but none of them is under a special regime of protection. Thus, the conservation status of P. mugo populations in Vitosha Mountain and western Stara Planina may deserve reevaluation. Future gene conservation efforts should focus on obtaining information on the genetic variation of adaptive traits in P. mugo.


2017 ◽  
Vol 58 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Giulia Furfaro ◽  
Egidio Trainito ◽  
Franco De Lorenzi ◽  
Marco Fantin ◽  
Mauro Doneddu

The nudibranch Tritonia nilsodhneri, usually feeding on a variety of gorgoniacean species, is known from different localities of the eastern Atlantic Ocean and the Mediterranean Sea. Knowledge of the host preferences of the Mediterranean populations is still scarce. Few records of this nudibranch have been reported from the eastern Mediterranean basin. With this report, the occurrence of T. nilsodhneri within the Mediterranean basin is extended to the Adriatic Sea. Furthermore, the list of the host species associated to the Mediterranean populations for feeding habits is increased from two up to five. Mediterranean specimens of T. nilsodhneri were observed for the first time feeding and spawning on Leptogorgia sarmentosa, Eunicella cavolini and E. labiata. Finally, these last two Gorgoniidae species are also reported here as a new host species for T. nilsodhneri.


2018 ◽  
Author(s):  
Jana Verdura ◽  
Sonia de Caralt ◽  
Jorge Santamaria ◽  
Alba Vergés ◽  
Luisa Mangialajo ◽  
...  

Abstract: In the Mediterranean Sea, many species of Cystoseira, which are important habitat-forming species on shallow rocky bottoms, have gone missing from many coastal areas, impairing essential ecosystem services. Cystoseira crinita forests thrive in very shallow waters from sheltered environments and are currently regressing in several European shores. In the actual scenario of ocean warming it is essential to determine the vulnerability of these populations to thermal stress in order to design future conservation actions. Since the response of this macroalgae to thermal stress may be site-specific, here we compared the thermal tolerance of populations dwelling in the coldest and warmest areas of the Mediterranean Sea. We show that C. crinita populations from warmer areas (Eastern Mediterranean) had a temperature tolerance threshold 2ºC higher than Northwestern Mediterranean populations. There is a strong correlation between the observed differential phenotypic responses and the local temperature regimes experienced by each population. This is the first evidence for the role of thermal history in shaping the thermotolerance responses marine habitat-forming macroalgae under contrasting temperature environments. Financial support from EU2020 (R+I) under grant agreement No 689518 (MERCES) and MINECO (CGL2016-76341-R).


Sign in / Sign up

Export Citation Format

Share Document