scholarly journals Effect of Arbuscular Mycorrhizal (AM) fungi on growth enhancement of black pepper (Piper nigrum L.) at nursery stage

2019 ◽  
Vol 15 (1) ◽  
pp. 137-140
Author(s):  
S.B. Gurumurthy ◽  
S.V. Patil ◽  
T.H. Shankarappa ◽  
A. Prashant ◽  
Ratnakar M. Shet
Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Syed Dastager ◽  
C. Deepa ◽  
Ashok Pandey

AbstractA Gram positive, rod-shaped potential strain was selected from the pool of bacterial isolates obtained from the Western Ghats forest (India) on the basis of zone of P-solubilization activity. Identification based on 16S rRNA gene sequence revealed that the strain is of Bacillus species, sharing highest sequence similarity to Bacillus tequilensis NRRL B-41771T (99.5%). Strain NII-0943 was able to produce good amount of indole acetic acid (IAA) and was positive for siderophore production. In addition to IAA and siderophore attributes, strain NII-0943 also possessed the characteristics like Ca3(PO4)2 solubilization and growth in nitrogen-free medium. Seed inoculation with the strain NII-0943 resulted in significantly higher root initiation in black pepper cuttings grown under pots. The contents of nitrogen and phosphorus in both soil and plant were also enhanced significantly in treatments inoculated with these bacterial inocula. Hence, based on this evidence it is proposed that strain NII-0943 could be deployed as a plant growth-promoting inoculant to attain the desired results of bacterization.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 366-369 ◽  
Author(s):  
Amelia Camprubí ◽  
Cinta Calvet

The selection of the most effective arbuscular mycorrhizal (AM) fungi for growth enhancement of citrus cultivars used as rootstocks was the first step toward development of an AM inoculation system in citrus nurseries in Spain. AM fungi were isolated from citrus nurseries and orchards in the major citrus-growing areas of eastern Spain. The most common AM fungi found in citrus soils belonged to Glomus species, and G. mosseae (Nicol. & Gerd.) Gerdemann & Trappe and G. intraradices Schenck & Smith were the AM fungi most frequently associated with citrus roots. The most effective fungus for growth enhancement of citrus rootstocks was G. intraradices. Significant differences in mycorrhizal dependency among rootstocks were confirmed. Sour orange (Citrus aurantium L.) and Cleopatra mandarin (C. reshni L.) were more dependent than Troyer citrange [C. sinensis (L.) Obs. × Poncirus trifoliata (L.) Raf.] and Swingle citrumelo (C. paradisi Macf. × P. trifoliata). Moreover, several inoculation systems for plant production were evaluated for their effectiveness in promoting root colonization of the rootstock cultivars.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 442D-442
Author(s):  
A. Michel-Rosales ◽  
J. Farias ◽  
S. Guzman ◽  
G. Lopez ◽  
G. Valdovinos

In western Mexico, banana is traditionally multiplied by vegetative reproduction in the orchard; recently, micropropagation of this species has increased considerably. Banana has been shown to give a positive response to AM fungal inoculation. However, the selection of efficient AM fungi species, currently propagated in vitro, has not been documented. The selection of the most-effective arbuscular mycorrhizal (AM) fungi for growth enhancement of banana vitroplants is the first step toward development of an AM inoculation system. This work reports the effect of nursery inoculation of Glomus aggregatum, G. clarum, G. etunicatum, G. intraradices, G. monosporum, G. mosseae, and Gigaspora margarita on the banana vitroplants growth. Pots (4 kg) containing a mixture of soil and coconut fiber (1:1) sterilized with methyl bromide were used. Treatments were arranged under a fully randomized experimental design with eight replications. The plants were harvested 120 days after inoculation and plant height, number of leaves, leaf area, fresh weight of roots, mycorrhizal colonization, and intensity of infection were measured. Glomus etunicatum, G. monosporum, G. mosseae, and G. aggregatum were shown to be the most-effective endophytes. Plant height was increased, as well as the production of banana roots in response to mycorrhizal inoculation with these fungi. On the other hand, G. intraradices and G. clarum showed low levels of colonization. The data clearly show the most efficient AM fungi for future inoculation studies in nursery banana production.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Shipra Singh ◽  
Ajay Kumar ◽  
Anita Pandey ◽  
Lok Man S. Palni

Dendrocalamus strictus ((Roxb.) Nees) was tested as a perennial host plant for propagation of an arbuscular mycorrhizal (AM) fungal consortium, initially isolated from rhizosphere of tea plants growing in the colder regions. The host performance in terms of colonization and spore production was compared with two annual hosts. The mycorrhizal dependency and growth enhancement potential were analyzed to test the suitability of D. strictus as a host plant. After 90 days of growth, 77.2% roots of D. strictus were found to be colonized by AM fungi with a spore count of 7 per g soil. AM fungal colonization and spore density values were lower in case of the host plants tested. Growth of D. strictus plants was found to be enhanced, in terms of all studied parameters; significant increases were recorded in shoot length as well as fresh and dry weight of shoots, a part of commercial importance. Similarly, P content, protein concentration, chlorophyll a and chlorophyll b contents were found to increase significantly. These data suggest that D. strictus can be used for the multiplication of AM fungi, isolated originally from the rhizosphere of tea; simultaneously, higher shoot biomass can provide additional economic benefit, using this environment friendly technology.


2021 ◽  
Vol 63 (9) ◽  
pp. 44-47
Author(s):  
Vu Phong Nguyen ◽  
◽  
Trung Nguyen Vu ◽  
Kien Tran ◽  
Thi Truc Mai Ha ◽  
...  

Mycorrhiza was considered to enhance plant growth, especially in unfavourable environmental conditions. From 60 samples of rhizospheric soils and roots of black pepper (Piper nigrum) grown in Ba Ria - Vung Tau, Dong Nai, and Gia Lai provinces, the presence of Acaulospora, Gigaspora, Glomite, Glomus,and Scutellospora genera were detected, of which Glomus and Acaulospora were dominants. After 40 days of inoculation, mycorrhiza multiplied 8.5 fold on corn (Zea mays) and 6.5 fold on sorghum (Sorghum bicolor) or goosegrass (Eleusine indica). Black-pepper cuttings on substrate supplemented mycorrhiza showed better growth than the non-inoculated cuttings. Results suggest the potential of applying mycorrhizal fungi as biological agents in sustainable black pepper cultivation, adapting to climate change


Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
HRW Dharmaratne ◽  
BL Tekwani ◽  
NPD Nanayakkara
Keyword(s):  

2015 ◽  
Vol 4 (3) ◽  
pp. 460-468
Author(s):  
Yap Chin Ann

The last nutrient management review of black pepper was done in 1968. There is, therefore, a need to develop new technology to improve pepper production and transfer that technology to production site. This experiment was carried out to study the effect of newly developed biochemical fertilizer on some physiological characteristics, yield and soil fertility of pepper. The treatment consisted of T1 (BS): chemical fertilizer (N:12%, P:12%, K:17%); T2 (BK1): biochemical fertilizer F1 N:15%, P:5%, K:14) and T3 (BK2): biochemical fertilizer F2 (N:13%, P:4%, K:12). The biochemical fertilizer F1 out-yielded chemical and biochemical fertilizer F2 by 75.38% and 16.45% respectively with the higher yield being associated with various phonotypical alterations, which are reported here. Significant measureable changes were observed in physiological processes and plant characteristics, such as large leaf area index, more chlorophyll content and high photosynthesis rate coupled with lower transpiration rate in biochemical fertilizer F1(BK1) treatment compared with other treatment. The high fertility level in biochemical fertilizer F1 and biochemical fertilizer F2 (BK2) reflected the important of organic material in improving soil quality. In conclusion, the achieve high growth performance and yield in pepper, chemical fertilizer alone is insufficient whilst combination of organic and inorganic fertilizer with balance nutrient content gave a significant increase in yield and growth of pepper. 


Sign in / Sign up

Export Citation Format

Share Document