scholarly journals Application of GIS and Spatial Analysis of Golden Eagle Fatalities Caused by Wind Turbines at the Altamont Pass Wind Resource

2000 ◽  
Author(s):  
Andrew Pinger
2020 ◽  
Vol 203 ◽  
pp. 104206 ◽  
Author(s):  
Nikolaos Chrysochoidis-Antsos ◽  
Andrea Vilarasau Amoros ◽  
Gerard J.W. van Bussel ◽  
Sander M. Mertens ◽  
Ad J.M. van Wijk

Author(s):  
Andrew J. Goupee ◽  
Bonjun J. Koo ◽  
Richard W. Kimball ◽  
Kostas F. Lambrakos ◽  
Habib J. Dagher

Beyond many of Earth's coasts exists a vast deepwater wind resource that can be tapped to provide substantial amounts of clean, renewable energy. However, much of this resource resides in waters deeper than 60 m where current fixed bottom wind turbine technology is no longer economically viable. As a result, many are looking to floating wind turbines as a means of harnessing this deepwater offshore wind resource. The preferred floating platform technology for this application, however, is currently up for debate. To begin the process of assessing the unique behavior of various platform concepts for floating wind turbines, 1/50th scale model tests in a wind/wave basin were performed at the Maritime Research Institute Netherlands (MARIN) of three floating wind turbine concepts. The Froude scaled tests simulated the response of the 126 m rotor diameter National Renewable Energy Lab (NREL) 5 MW, horizontal axis Reference Wind Turbine attached via a flexible tower in turn to three distinct platforms, these being a tension leg-platform, a spar-buoy, and a semisubmersible. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with irregular sea states and dynamic winds. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine, which exhibited low swirl and turbulence intensity in the flow field. Recorded data from the floating wind turbine models include rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions, and accelerations at key locations on the nacelle, tower, and platform. A comprehensive overview of the test program, including basic system identification results, is covered in previously published works. In this paper, the results of a comprehensive data analysis are presented, which illuminate the unique coupled system behavior of the three floating wind turbines subjected to combined wind and wave environments. The relative performance of each of the three systems is discussed with an emphasis placed on global motions, flexible tower dynamics, and mooring system response. The results demonstrate the unique advantages and disadvantages of each floating wind turbine platform.


Author(s):  
Susan W. Stewart ◽  
Sue Ellen Haupt ◽  
Julia A. Cole

This study addresses the issue of siting wind turbines on existing structures in the built environment for optimal performance. Annually averaged wind power maps were produced over the surface of two different building types using a Detached Eddy Simulation (DES) model in order to assess the feasibility of building integrated wind under various wind resource conditions. The modeling approach was first applied to a cubical geometry for which validation of the CFD results was possible with existing field measurements. A pitched roof building was also modeled to study the power density over top of typical residential shaped structures. The average annual power density for twenty-seven locations over the top of the modeled structures was analyzed under varying wind direction distributions (wind roses). The overall results of this study have the potential to inform the wind energy and built environment communities on best practices for siting wind turbines on or near buildings.


Author(s):  
Paula Peña-Carro ◽  
Óscar Izquierdo-Monge ◽  
Luis Hernández-Callejo ◽  
Gonzalo Martín-Jiménez

The use of wind resources has always gone hand in hand with high wind speeds in open fields. This paper develops the decisions to be taken for the selection, installation, and connection of small wind turbines in peri-urban environments, where wind speeds are medium or low. The guidelines are detailed throughout the document, starting with the study of the wind resource, the selection of the turbine, installation, and real-time monitoring of production for integration into a micro power grid. The installation of small wind systems in places as close as possible to the point of demand makes it possible to achieve a reduction in the cost of the electricity bill. This is thanks to the instantaneous control of generation and demand at a particular level through the installation of software, in this case, Home Assistant. The novelty of this paper is the use of this software Home Assistant to integrate of a small wind turbine in a microgrid and its control system.


2020 ◽  
Author(s):  
Esteban Fernandez-Juricic ◽  
Jeffrey Lucas ◽  
Patrice Baumhardt ◽  
Benjamin Goller ◽  
Todd Katzner ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 9222
Author(s):  
Lorenzo Battisti

H-VAWTs or straight blades VAWTs are the most common turbine architecture employed for small VAWTs. The manufacture of straight, constant chord blades, coupled with the transport advantages, make this choice technologically simpler, compared to curved (eggbeater) type or curved-bent (Gorlov) type, allowing a large selection of materials, and design solutions. Recently, the strategies to accomplish the task of zero-emission buildings identified wind energy exploitation in the urban environment as one of the most promising. Micro and mini wind turbines installed on buildings (BAWT—building-augmented wind turbines) are considered the candidate technology after that of photovoltaic panels; under certain conditions, these technologies can be combined to obtain the maximum natural resources exploitation in the urban environment. VAWT, compared to HAWT, would ideally perform better in the fast-changing, turbulent winds, typical of the built environment. Additionally, its 3D shape favors a better architectonic integration with the volumes of the building. Nevertheless, despite these claimed advantages, this architecture did still not come to the expected fruition and experience, which revealed that the stochastic nature of the wind resource in the built environment determines a quite challenging context, reflecting not only the structural endurance, but also the operations and the annual energy production. These site characteristics stress the detrimental effect of the high polar inertia of this architecture hampering, be it a reduction in the acceleration and deceleration capability of the rotor, the required adaptation of the rotational speed to the varying wind conditions, or compromising any form of robust control. This leads to poor aerodynamic performance and potential structural damages. This paper contributes to mitigating the issue of the high rotor polar inertia of the H-VAWT without affecting other essential design requirements (strength, performances, needs of smooth control). The work identifies the design parameters governing the rotor acceleration and deceleration and develops a rational design procedure aimed at improving the H-VAWT control and performance.


Sign in / Sign up

Export Citation Format

Share Document