scholarly journals Unprecedented progresses of biomedical nanotechnology during conventional smart drug delivery systems (SDDSs) of francium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Alireza Heidari ◽  
Katrina Schmitt ◽  
Maria Henderson ◽  
Elizabeth Besana
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject. Results To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells. Conclusions A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Louise Van Gheluwe ◽  
Igor Chourpa ◽  
Coline Gaigne ◽  
Emilie Munnier

Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.


Drug Delivery ◽  
2014 ◽  
pp. 265-316
Author(s):  
Eric P. Holowka ◽  
Sujata K. Bhatia

2019 ◽  
Vol 91 (4) ◽  
pp. 687-706 ◽  
Author(s):  
María Vallet-Regí

Abstract Since the second half of the 20th century, bioceramics are used for bone repair and regeneration. Inspired by bones and teeth, and aimed at mimicking their structure and composition, several artificial bioceramics were developed for biomedical applications. And nowadays, in the 21st century, with the increasing prominence of nanoscience and nanotechnology, certain bioceramics are being used to build smart drug delivery systems, among other applications. This minireview will mainly describe both tendencies through the research work carried out by the research team of María Vallet-Regí.


2020 ◽  
Vol 8 (31) ◽  
pp. 6517-6529 ◽  
Author(s):  
Zheng Lian ◽  
Tianjiao Ji

Representative strategies for designing smart drug delivery systems by using functional peptides in the past few years are highlighted in this review.


Sign in / Sign up

Export Citation Format

Share Document