scholarly journals INTERVALO HÍDRICO ÓTIMO PARA AVALIAÇÃO DE SISTEMAS DE PRODUÇÃO E RENDIMENTO DO FEIJÃO

Irriga ◽  
2017 ◽  
Vol 22 (2) ◽  
pp. 383-399 ◽  
Author(s):  
Laura Fernanda Simões Da Silva ◽  
Mara De Andrade Marinho ◽  
Raquel Stucchi Boschi ◽  
Edson Eiji Matsura

INTERVALO HÍDRICO ÓTIMO PARA AVALIAÇÃO DE SISTEMAS DE PRODUÇÃO E RENDIMENTO DO FEIJÃO Laura Fernanda Simões da Silva1; Mara de Andrade Marinho2; Raquel Stucchi Boschi3 E Edson Eiji Matsura2  ¹Programa de Pós-Graduação em Agroecologia e Desenvolvimento Rural / CCA / UFSCar Rodovia Anhanguera, km 174 – SP-330 - Araras - SP - Brasil - CEP: 13600-970, email: [email protected] ²Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Avenida Candido Rondon, n 501, Barão Geraldo, Campinas – SP, Brasil - CEP 13083-875, email: [email protected]; [email protected]³Secretaria de Gestão Ambiental e Sustentabilidade/ UFSCar Rod. Washington Luis, km 235 - São Carlos - SP - Brasil - CEP:13565-905, email: [email protected]  1 RESUMO O objetivo deste trabalho foi compreender o efeito de dois sistemas de produção agrícola, com e sem irrigação, sobre atributos físicos do solo e sobre o rendimento do feijão, utilizando o conceito de intervalo hídrico ótimo (IHO). A pesquisa foi conduzida em parcelas experimentais situadas na região de Campinas, cultivadas com feijão sob Sistema Plantio Direto (SPD) e Sistema Convencional com Grade (SC). Para determinação do IHO, os atributos densidade do solo (Ds), curva de retenção de água (CRA), curva de resistência do solo à penetração (RP) e porosidade de aeração foram determinados para camada do solo 0-0,20 m, a partir de amostras indeformadas extraídas de diferentes locais, de modo a representar uma faixa ampla de variação da densidade do solo. O monitoramento da qualidade do solo e do desempenho dos sistemas de produção foi efetuado com base em dados de: Ds, umidade volumétrica e produtividade da cultura de feijão, irrigado e não irrigado para uma safra agrícola de inverno. Os limites do IHO foram definidos pelo q-0,01MPa (limite superior) e pelo q-1,5MPa (limite inferior), para os valores de Ds até 1,2 kg dm-3. A partir deste valor de Ds, o limite inferior passa a ser definido pelo qRP. O período de dias em que o solo permaneceu fora das condições ideais de umidade estabelecidas pelo IHO foi suficiente para afetar diferencialmente a produtividade do feijoeiro nos tratamentos não irrigados, com vantagem para o SPD. O IHO representa um importante indicador na avaliação da qualidade estrutural do solo submetido a diferentes sistemas de manejo. Ainda, o IHO pode ser utilizado no monitoramento da qualidade física do solo associado a uma maior ou menor frequência de ocorrência da umidade do solo fora dos limites estabelecido pelo mesmo. Palavras-chave: manejo de irrigação, densidade do solo, sistema plantio direto, sistema convencional, qualidade física.  Silva, L. F. S.; Marinho, M. A.; Boschi, R. S.; Matsura, E. E.LEAST LIMITING WATER RANGE TO ASSESS BEAN MANAGEMENT SYSTEMS AND YIELD   2 ABSTRACT The objective of this study was to understand the effect of two management systems, with and without irrigation, on soil physical properties and bean yield, using the concept of least limiting water range (LLWR). The study was conducted in experimental plots located in Campinas, planted with beans under no tillage system (NTS) and conventional system (SC). To determine the LLWR, bulk density (BD), water retention curve (WRC), soil resistance to penetration curve (SRPC) and macroporosity were determined for the layer 0-0.20 m, from undisturbed soil samples extracted from different locations to represent a wide range of bulk density. Monitoring of soil quality and performance of production systems was made based on the following data: BD, water content and productivity of bean crops, irrigated and non-irrigated, for a harvest of winter. The θ-0,01MPa determined the upper limit of the LLWR and θ-1,5MPa the lower limit to BD equal to 1.2 kg dm-3 from which the lower limit is set by SRPC. The period of days that the soil remained outside the ideal conditions of moisture established by the LLWR was enough to differentially affect bean yield in non-irrigated treatments, with better results for NTS. The LLWR is an important indicator for assessing the soil structural quality under different management systems. Additionally, the LLWR can be used to monitor the soil physical quality associated with a higher or lower frequency of occurrence of soil moisture outside the limits set by LLWR. Keywords: irrigation management, bulk density, direct drilling system, conventional system, soil physical quality.

2010 ◽  
Vol 67 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Jonez Fidalski ◽  
Cássio Antonio Tormena ◽  
Álvaro Pires da Silva

Machinery-based farming operations used for perennial fruit crops often damage soils, particularly if the soil is wet and prone to compaction. We hypothesized that perennial vegetation growing in the interrows of orange orchards can mitigate the soil physical degradation from machinery traffic. The objective of this study was to investigate the effects of different groundcover management systems on the soil physical quality indicators including the least limiting water range (LLWR). An experiment was started in 1993 in a Typic Paleudult to evaluate three groundcover management systems: Bahia grass (Paspalum notatum) with mowing, perennial peanut (Arachis pintoi), and natural regrowth in which weeds were controlled by herbicide. The experimental design was randomized complete block with three replications. In May 2003, 216 undisturbed soil samples were collected at 0-0.15-m depths under and between wheel tracks in the orchard interrows. The soil bulk density, soil organic carbon content, resistance to penetration, soil water retention curve and soil resistance to penetration curve were determined in order to estimate the LLWR. The higher LLWR under wheel tracks in Bahia grass compared to perennial peanut or natural regrowth suggest that a better soil physical quality was achieved with Bahia grass.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
A.W. Al-Kayssi ◽  
Ahmed Dawood Salman

"A newly proposed concept of soil physical quality and its development as a guide to assess the extent of soil degradation or improvement and to determine appropriate soil management. The study aimed to: evaluate the soil physical quality index of gypsiferous soils under different management systems as well as determine the optimal pore size distribution and the optimum moisture-tension curve based on the quality of the physical soil properties under different management systems and diagnose the distribution of pore sizes and moisture-tension curves that could be used to predict the changes in the physical quality of gypsiferous soils because of the applied agricultural management pattern. Physical indicators measured on undisturbed soil samples collected from 15 selected sites in Salah Aldeen Governorate, with different gypsum content (30 to 301 g kg-1 soil). The results showed that the best distribution of measured pore size (h) S *, (Normalized pore volume) was for a group of soils that were largely similar in terms of shape and location parameters. Accordingly, the optimal pore distribution considered representative of these soils. The results showed the possibility of using the (Dexter-S) indicator correctly and in coordination with the distribution of pore size and the soil moisture characteristic curve to calculate the physical soil quality in soils of different gypsum content.


2010 ◽  
Vol 34 (3) ◽  
pp. 717-723 ◽  
Author(s):  
Fernando Silva Araújo ◽  
Adeodato Ari Cavalcante Salviano ◽  
Luiz Fernando Carvalho Leite ◽  
Zigomar Menezes de Souza ◽  
Allan Charlles Mendes de Sousa

Soil physical quality is essential to global sustainability of agroecosystems, once it is related to processes that are essential to agricultural crop development. This study aimed to evaluate physical attributes of a Yellow Latossol under different management systems in the savanna area in the state of Piaui. This study was developed in Uruçuí southwest of the state of Piauí. Three systems of soil management were studied: an area under conventional tillage (CT) with disk plowi and heavy harrow and soybean crop; an area under no-tillage with soybean-maize rotation and millet as cover crop (NT + M); two areas under Integrated Crop-Livestock System, with five-month pasture grazing and soybean cultivation and then continuous pasture grazing (ICL + S and ICL + P, respectively). Also, an area under Native Forest (NF) was studied. The soil depths studied were 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. Soil bulk density, as well as porosity and stability of soil aggregates were analyzed as physical attributes. Anthropic action has changed the soil physical attributes, in depth, in most systems studied, in comparison to NF. In the 0.00 to 0.05 m depth, ICL + P showed higher soil bulk density value. As to macroporosity, there was no difference between the management systems studied and NF. The management systems studied changed the soil structure, having, as a result, a small proportion of soil in great aggregate classes (MWD). Converting native forest into agricultural production systems changes the soil physical quality. The Integrated Crop-Livestock System did not promote the improvement in soil physical quality.


2014 ◽  
Vol 38 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Gabriel Pinto Guimarães ◽  
Eduardo de Sá Mendonça ◽  
Renato Ribeiro Passos ◽  
Felipe Vaz Andrade

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.


2014 ◽  
Vol 30 (3) ◽  
pp. 423-434 ◽  
Author(s):  
M. Castellini ◽  
M. Niedda ◽  
M. Pirastru ◽  
D. Ventrella

Soil Research ◽  
2012 ◽  
Vol 50 (6) ◽  
pp. 455 ◽  
Author(s):  
V. P. Pereira ◽  
M. E. Ortiz-Escobar ◽  
G. C. Rocha ◽  
R. N. Assis Junior ◽  
T. S. Oliveira

Concern about soil physical quality has grown in recent years, particularly in view of serious problems caused by intensive soil use. We hypothesised that improper soil management in irrigated areas damages the structure of sensitive soils in some regions in North-eastern Brazil. The aim of the study was to evaluate the physical quality of irrigated soils planted with annual and perennial crops, compared with soils under natural vegetation in Ceará State, Brazil. Measurements were made of least limiting water range (LLWR), the S index, and relative density. Undisturbed soil samples were collected at two depths (5–10 and 20–25 cm) in four cultivated areas (banana, guava, pasture, and maize/bean in succession) and two natural vegetation areas (NV1, NV2) adjacent to the cultivated areas. All sites were in the Jaguaribe-Apodi Irrigated District, Limoeiro do Norte, Ceará, Brazil. The LLWR was determined using the water retention curve, soil resistance to penetration, and soil bulk density, which are parameters needed to obtain the upper and lower limits of LLWR. The S index was obtained from the water retention curve. The relative density was obtained from the relationship between bulk density and maximum density obtained from the Proctor test. The S index varied as a function of soil management. The variation in LLWR differed between the studied areas as a function of soil bulk density. The relative densities for NV1 and NV2 were lower than for cultivated areas, showing that intensive soil use has caused compaction. The studied parameters seem to be good indicators of soil physical quality, and it was noticed that soils under cultivation suffer an alteration of their structure relative to soils under natural vegetation.


2018 ◽  
Vol 10 (7) ◽  
pp. 46
Author(s):  
Diego Dos Santos Pereira ◽  
Rafael Montanari ◽  
Christtiane Fernandes Oliveira ◽  
Jean Carlos de Almeida Ramos ◽  
Alan Rodrigo Panosso ◽  
...  

The soil physical quality is a way of evaluating the current condition of forest plantations that is growing in the southeast region of Mato Grosso do Sul State. In this sense, this work aimed to evaluate the impact of the forest plantations on the physical quality of an Oxisol (Haplic Acrustox) in Cerrado. The experiment was conducted in the Experimental area of the Teaching and Research Farm, of the Engineering college of Ilha Solteira (UNESP), located in the city of Selvíria-MS, situated in the conditions of the Brazilian Cerrado. The soil samples were collected at depths of 0.00-0.10; 0.10-0.20; 0.20-0.30 and 0.30-0.40 m in three areas cultivated for 30 years: area (1) Pine forest (Pinus caribaea var. hondurensis); (2) Eucalyptus forest (Eucalyptus camaldulensis); (3) Reforested ciliary forest, being used a completely randomized design, with 25 replications and 3 treatments. The analyzed attributes of the soil was: macroporosity (Ma), microporosity (Mi), total porosity (TP), bulk density (BD), real particle (RP), soil resistance to penetration (PR), gravimetric moisture (GM), volumetric moisture (VM) and sand, silt and clay contents. The three evaluated areas presented macroporosity below the critical limit (0.100 m³ m-³), thereby impairing the root development. The three evaluated areas affected the physical quality of the soil. Being the physical attributes that most influenced in the reduction of the soil physical quality was the bulk density, total porosity, microporosity, macroporosity and soil resistance to penetration.


2018 ◽  
Vol 10 (11) ◽  
pp. 489
Author(s):  
C. V. V. Farhate ◽  
Z. M. Souza ◽  
W. S. Guimarães Jr ◽  
A. C. M. Sousa ◽  
M. C. C. Campos ◽  
...  

Currently, the management practices employed in Brazilian sugarcane plantations have contribute to soil physical degradation and, few studies considering the effect of cover crop associated with conservationist soil tillage systems to control or even reverse this process. Therefore, with the aim to assess the impact of cover crop and tillage systems on the least limiting water range (LLWR) and the S index in two soils of different textures used for sugarcane production, a fieldwork was carried out in two sugarcane plantations in the state of São Paulo, Brazil. The experimental design is a split-plot with four repetitions. The main factor consisted of soil cover vegetation: cover crop and fallow, and the second factor, the tillage system: minimum tillage and conventional tillage. The data of this study demonstrated that clayey and medium-textured soil are sensitive to the management systems used. The use of cover crop promoted an increase of LLWR (average incremental rate of 105% for clayey and 100% for medium-textured soil) and S index (average incremental rate of 16% for clayey and 10% for medium-textured soil). The maintenance of soil under fallow represented restrictive conditions for the growth/development of the plants due to the degradation of the soil structure. In addition, conservation management systems, such as minimum tillage, resulted in better soil physical quality when associated with cover crop. Finally, the clayey and medium-textured soil, show good S index during the first cycle of sugarcane cultivation.


2004 ◽  
Vol 61 (6) ◽  
pp. 649-654 ◽  
Author(s):  
Tairone Paiva Leão ◽  
Alvaro Pires da Silva

The least limiting water range (LLWR) of soils has been employed as a methodological approach for evaluation of soil physical quality in different agricultural systems, including forestry, grasslands and major crops. However, the absence of a simplified methodology for the quantification of LLWR has hampered the popularization of its use among researchers and soil managers. Taking this into account this work has the objective of proposing and describing a simplified algorithm developed in Excel® software for quantification of the LLWR, including the calculation of the critical bulk density, at which the LLWR becomes zero. Despite the simplicity of the procedures and numerical techniques of optimization used, the nonlinear regression produced reliable results when compared to those found in the literature.


Sign in / Sign up

Export Citation Format

Share Document