scholarly journals Use of Sewage Sludge in Agriculture

Author(s):  
Daniela CIUPEANU CĂLUGĂRU

For turning to a high degree of favorability of sludge from wastewater treatment plants, currently the reintroduction in the natural circuit of this waste is an urgent priority. Knowing precisely the composition of chemical and biological sludge from waste water in accordance with the law and the rules of their application, along with modern wastewater treatment appropriate technologies play a key role on environmental protection. Involvement by precise rules, the content of heavy metals in relation to the maximum permitted by law, translate in to particularly advantageous results in terms of environmental quality.

Chemosphere ◽  
2007 ◽  
Vol 66 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jiayin Dai ◽  
Muqi Xu ◽  
Jiping Chen ◽  
Xiangping Yang ◽  
Zhenshan Ke

2016 ◽  
Vol 23 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Thomas Spanos ◽  
Antoaneta Ene ◽  
Chrysoula Styliani Patronidou ◽  
Christina Xatzixristou

AbstractThe aim of this study was to evaluate the temporal variations of selected heavy metals level in anaerobic fermented and dewatered sewage sludge. Sewage sludge samples were collected in different seasons and years from three municipal wastewater treatment plants (WWTPs) located in Northern Greece, in Kavala (Kavala and Palio localities) and Drama (Drama locality) Prefectures. An investigation of the potential of sludge utilization in agriculture was performed, based on the comparison of average total heavy metal concentrations and of chromium species (hexavalent, trivalent) concentrations with the allowed values according to the Council Directive 86/278/EEC and Greek national legislation (Joint Cabinet Decision 80568/4225/91) guidelines. In this regard, all the investigated heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, Hg) and chromium species Cr(VI) and Cr(III) have average concentrations (dry matter weight) well below the legislated thresholds for soil application, as following: 2.12 mg kg−1Cd; 103.7 mg kg−1Cr; 136.4 mg kg−1Cu; < 0.2 mg kg−1Hg; 29.1 mg kg−1Ni; 62.0 mg kg−1Pb; 1253.2 mg kg−1Zn; 1.56 mg kg−1Cr(VI) and 115.7 mg kg−1Cr(III). Values of relative standard deviation (RSD) indicate a low or moderate temporal variability for domestic-related metals Zn (10.3-14.7%), Pb (27.9-44.5%) and Cu (33.5-34.2%), and high variability for the metals of mixed origin or predominantly resulted from commercial activities, such as Ni (42.4-50.7%), Cd (44.3-85.5%) and Cr (58.2-102.0%). For some elements the seasonal occurrence pattern is the same for Kavala and Palio sludge, as following: a) Cd and Cr: spring>summer>winter; b) Cu, Ni and Pb: winter>spring>summer. On average, in summer months (dry season) metal concentrations are lower than in spring and winter (wet seasons), with the exception of Zn. For Kavala and Palio the results demonstrate that the increased number of inhabitants (almost doubled) in summer time due to tourism does not influence the metal levels in sludge. Comparing the results obtained for similar spring-summer-winter sequences in 2007 and 2010/11 and for the spring season in 2007, 2008 and 2010, it can be noticed that, in general, the average heavy metal contents show an increasing tendency towards the last year. In all the measurement periods, the Palio sludge had the highest metal contents and Kavala sludge the lowest, leading to the conclusion that the WWTP operating process rather than population has a significant effect upon the heavy metal content of sludge. Cr(VI)/Cr(total) concentration ratios are higher for Kavala sludge in the majority of sampling campaigns, followed by Drama and Palio sludge. The metals which present moderate to strong positive correlation have common origin, which could be a domestic-commercial mixed source.


Detritus ◽  
2020 ◽  
pp. 160-168
Author(s):  
Ali Khakbaz ◽  
Maria De Nobili ◽  
Matia Mainardis ◽  
Marco Contin ◽  
Eleonora Aneggi ◽  
...  

Subsequent to the increasing diffusion of wastewater treatment, particularly in high- and middle-income countries, the sewage sludge generated should be treated and valorised in an ecological and economic way, thus contributing to the circular economy. In this study, the monitoring of Heavy Metals (HM), Extractable Organic Halogens (EOX) and Linear Alkylbenzene Sulphonate (LAS) in sewage sludge from 10 different wastewater treatment plants located in Friuli Venezia Giulia (Italy) was reported, and their macronutrient content provided. The obtained results showed, for all tested samples, that HM content in sewage sludge was below the maximum permitted limits provided for by Italian and European regulations for agricultural reuse. Comparison with a similar monitoring campaign carried out in 2006 revealed how, while wastewater treatment plants efficiently resolved water pollution, they accumulated heavy metals and other persistent toxic compounds in sludge, thus restricting their potential reuse. Consequently, consistent and regular sludge monitoring should be undertaken to prevent soil and groundwater contamination. These outcomes could be of particular relevance for the future perspective of agricultural reuse of sewage sludge in waste management practices.


2020 ◽  
Vol 18 (2) ◽  
pp. e1103
Author(s):  
Hanwen Zhang ◽  
Yuee Huang ◽  
Shu Zhou ◽  
Liangchen Wei ◽  
Zhiyuan Guo ◽  
...  

Aim of study: To investigate the content, contamination levels and potential sources of five heavy metals (Hg, Pb, Cd, Cr, As) in sewage sludge from eight wastewater treatment plants (W1 to W8).Area of study: Wuhu, located in southeastern Anhui Province, southeastern China.Material and methods: The sewage sludge pollution assessment employed the single-factor pollution index, Nemerow’s synthetic pollution index, monomial potential ecological risk coefficient and potential ecological risk index. The potential sources among the five heavy metals were determined using the Pearson’s correlation analysis and principal component analysis (PCA).Main results: The mean concentrations of the heavy metals were 0.27 mg/kg (Hg), 70.78 mg/kg (Pb), 3.48 mg/kg (Cd), 143.65 mg/kg (Cr) and 22.17 mg/kg (As). W1, W5 and W6 sewage sludge samples showed the highest levels of heavy metal contamination, and cadmium had the highest contamination level in the study area. Pearson’s correlation analysis and PCA revealed that Pb and Cd mainly derived from traffic emissions and the manufacturing industry and that As and Cr originated from agricultural discharges.Research highlights: The pollution of cadmium in Wuhu should be controlled preferentially. The heavy metal pollution of W1, W5 and W6 sewage treatment plants is relatively high, they should be key prevention targets.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 706
Author(s):  
Robert Kowalik ◽  
Małgorzata Widłak ◽  
Agata Widłak

Sewage sludge is a very complex system, with solids and water. It is generated as waste from wastewater treatment. Sewage sludge is used to fertilize agricultural and forest areas and to rehabilitate devastated areas. It is a good organic fertilizer because it contains significant amounts of nutrients beneficial for plant development and humus-forming substances. The composition of sludge from municipal wastewater treatment plants is similar to soil organic matter, therefore it can be used to improve the physicochemical properties of soil, increasing its sorption capacity. Research material was collected in the Swietokrzyskie and Mazowieckie Voivodships. Sewage sludge was collected from the wastewater treatment plants in Sitkowka Nowiny (Sitkowka) and Kunow, as well as high-quality agricultural soil from Opatowiec and sandy-clay soil from Jastrzebie. Research was carried out on the sorption of heavy metals (Cd, Cr, Cu, Pb, Ni, Zn) by mixtures of sewage sludge with soil. The calculations were made for the concentrations of heavy metals in sewage sludge, soil, and sewage sludge–soil mixtures. The geoaccumulation index (Igeo) and the risk assessment code (RAC) were calculated. Increased sorption capacity was demonstrated in samples with a predominance of sewage sludge. It was shown that heavy metals from sewage sludge, after mixing with soil, changed their form from immobile to mobile.


2018 ◽  
Vol 55 (4) ◽  
pp. 700-703
Author(s):  
Carmelia Mariana Dragomir Balanica ◽  
Aurel Gabriel Simionescu ◽  
Iulian Gabriel Birsan ◽  
Cezar Ionut Bichescu ◽  
Cristian Muntenita

Sewage sludge resulted from urban wastewater treatment plants is generally accepted as a valuable source of nutrient and soil conditioner for agricultural usage. Analysis of amount of heavy metals in sewage sludge is essential previous to utilization of the sludge to agriculture considering the inevitable risk of heavy metal toxicity to soil, vegetation and humans. The present paper aims to analyse the characteristics of the sewage sludge resulted in an urban area for 5 years. Sewage sludge generated from five wastewater treatment plants in the South and South Est part of Romania were analysed.


Sign in / Sign up

Export Citation Format

Share Document