scholarly journals Arbuscular Mycorrhizal Fungi Enhance Plant Diversity, Density and Productivity of Spring Ephemeral Community in Desert Ecosystem

2017 ◽  
Vol 45 (1) ◽  
pp. 301-307 ◽  
Author(s):  
Zhaoyong SHI ◽  
Yongming WANG ◽  
Shouxia XU ◽  
Zhijian LAN ◽  
Bede S. MICKAN ◽  
...  

Arbuscular mycorrhizal (AM) fungi form intimate associations with the roots of about 85% of all terrestrial plants, and can greatly increase a plant’s uptake of soil nutrients and have been shown to influence plant diversity in several ecosystems. A lot of studies have reported the effect of arbuscular mycorrhizas on plant density, species diversity, richness and productivity in desert herbland in Gurbantonggut desert, China. Here, we conduct a mycorrhizal functional study by suppressing AM fungi by applying the fungicide benomyl as a soil drench in soil cores and field in-situ experiment. The mycorrhiza-responsiveness of the dominant species Erodium oxyrrhynchum is assessed in intact soil cores containing the indigenous AM fungi. The soil-cores experiment displayed E. oxyrrhynchum to have a significant positive shoot and root growth response, and this is in response to the abundance of the indigenous AM fungal colonisation. The field experiment indicates the total aboveground dry biomass is negatively influenced by the suppression of AM fungi, though, no significant effect produced in the dominant and common plant species. The fungal suppression also affected density, species diversity and richness. The density of non-mycorrhizal plant Alyssum linifolium increases significantly in the treatment of suppressed AM fungi. The spore density decreases significantly in benomyl-treated plots. Our results showed that AM fungi were very important in desert ecosystem for the maintaining of plant biodiversity, richness and productivity.

2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 463A-463
Author(s):  
Rhoda Burrows ◽  
Francis Pfleger

Growing a plant host in association with other plant species (i.e., increasing diversity) changes the composition of the associated arbuscular–mycorrhizal (AM) fungal community. We tested whether this alteration in the fungal community causes significant differences in the growth of Schizachyrium scoparium L. (Little Bluestem, a C4 grass) or Lespedeza capitata L. (Bush clover, a legume). Seedlings were transplanted into pasteurized soil inoculated with soil from monoculture plots of Schizachyrium or Lespedeza, respectively, vs. plots containing one, seven, or 15 additional plant species. Soil washes from a composite of the plots were added to all pots, including non-inoculated controls, to reduce differences in the non-AM microbial communities. Spore counts of the inoculum from Lespedeza plots showed increasing numbers of AM fungal spores and species richness with increasing plant diversity; this was not true with the Schizachyrium plots, possibly because Schizachyrium may be a better host to more species of AM fungi than Lespedeza. Both Schizachyrium and Lespedeza responded to inoculation with increased growth compared to non-inoculated controls. Tissue analyses of both species showed that inoculation increased the percentage of Cu, and lowered the percentage of Mn compared to control plants. Schizachyrium showed no significant differences in growth due to inoculum source (1-, 2-, 8-, or 16-species plots); while Lespedeza showed increases in root and shoot weights with increasing source-plot diversity.


2012 ◽  
Vol 28 (5) ◽  
pp. 453-462 ◽  
Author(s):  
Waldemar Zangaro ◽  
Adrielly Pereira Ansanelo ◽  
Luis Eduardo Azevedo Marques Lescano ◽  
Ricardo de Almeida Alves ◽  
Artur Berbel Lírio Rondina ◽  
...  

Abstract:Little is known about the relationship involving arbuscular mycorrhizal (AM) fungi and functional groups of plants that characterize different phases of tropical succession. We appraised the AM infection intensity of root cortex and spore density in the soil in sites over tropical successional gradients (grassland, secondary forest and mature forest) for several years in Araucaria, Atlantic and Pantanal ecosystems in Brazil. The intensity of AM infection decreased with advancing successional stages in all ecosystems and it was around 60–80% in early stages of succession, 37–56% in secondary forests and 19–29% in mature forests. Similarly, the AM spore number also decreased with advancing succession and was the highest in early stages (73–123 g−1), intermediate in secondary forests (32–54 g−1) and lowest in the mature forests (10–23 g−1). To verify whether such reductions influenced the potential of AM inoculum in soil, seedlings of Heliocarpus popayanensis (Malvaceae) were grown as test plants in soils obtained from five grasslands, five young secondary forests, and five mature forests in the Atlantic ecosystem. The soil inocula from the grasslands and secondary forests were 7.6 and 5.7 times more effective in stimulating seedling growth than inocula from the mature forests, respectively. Our results show that plant species in grasslands and young secondary forests stimulate the multiplication of AM fungi, leading to a higher potential of the AM inoculum. In later-successional stages, plant investment in AM fungi decreases and the potential of the AM inoculum is also reduced.


Author(s):  
Dipika J. Dalal ◽  
Hitesh Solanki

Mycorrhizal diversity of non-agricultural sites from Madhapar, Reladi and Anjar region of Kachchh regions were studied. Date palm is an economically important plant in dry lands of the world approach towards an investigation of AM fungi diversity and their association with the date palm in Kachchh. This is important to understand the root colonization, spore analysis and spore density in the study. The study is about the composition of AM fungi at an agricultural site. Also to understand the relevance of species composition and their relationship with abiotic factors. In the present work soil of agricultural field has been taken into consideration to understand the relevance.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ligia Lebrón ◽  
D. Jean Lodge ◽  
Paul Bayman

Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ among cultivars. Extraradical hyphal lengths differed significantly among locations. Although the same morphotypes of mycorrhizal fungal spores were present in the rhizosphere of the three cultivars and total spore density did not differ significantly, frequencies of spore morphotypes differed significantly among cultivars. Spore morphotypes were typical of Glomus and Sclerocystis. Levels of soil nutrients did not explain differences in AM colonzation among cultivars. The cultivar Caturra is a mutant of Borbón and has apparently lost Borbón’s capacity to support and benefit from an extensive network of AM hyphae in the soil. Widespread planting of Caturra, which matures earlier and has higher yield if fertilized, may increase dependence on fertilizers.


2018 ◽  
Vol 66 (4) ◽  
Author(s):  
Manju Gupta ◽  
Akshat Gupta ◽  
Prabhat Kumar

Increasing urbanisation is widely associated with decline in biodiversity of all forms. The aim of the present study was to answer two questions: (i) Does rapid urbanization in Delhi (India) affect biodiversity of arbuscular mycorrhizal (AM) fungi? (ii) If so, how? We measured the AM fungal diversity at nine sites located in Delhi forests, which had different types of urban usage in terms of heavy vehicular traffic pollution, littering, defecation and recreational activities. The study revealed a significant decrease in AM fungal diversity (alpha diversity) and abundance measured as spore density, biovolume, mean infection percentage (MIP) in roots, soil hyphal length and easily extractable glomalin related soluble proteins (EE-GRSP) at polluted sites. Non-metric multidimensional scaling (NMDS) and nested PERMANOVA, revealed significant differences in AM fungal community structure which could be correlated with variations in soil moisture, temperature, pH, carbon, and nitrogen and phosphorus levels. BEST (biota and environmental matching) analysis of biological and environmental samples revealed that soil temperature and moisture accounted for 47.6 % of the total variations in the samples. The study demonstrated how different forms of human activities in urban ecosystems of Delhi are detrimental to the diversity and abundance of AM fungi.


2005 ◽  
Vol 56 (12) ◽  
pp. 1405 ◽  
Author(s):  
R. M. Kelly ◽  
D. G. Edwards ◽  
J. P. Thompson ◽  
R. C. Magarey

Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mg P/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.


Botany ◽  
2010 ◽  
Vol 88 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Gisela Cuenca ◽  
Milagros Lovera

Limited information is available for the diversity of arbuscular mycorrhizal fungi (AMF) in most tropical soils. To assess the biodiversity of AMF in a sclerophyllous shrubland ecosystem, an exhaustive collection of spores from soil collected in the Venezuelan Guayana was undertaken. Spores were collected from the first 15 cm of soil, four times throughout the year, and at four different depths during dry and wet seasons. A total of 50 AMF morphotypes were collected in the field, and 2 more were isolated from pot cultures. There was a reduction in spore density with soil depth, although richness of spores remained the same up to a depth of 45 cm. Spore density and richness based on soil cores were higher in the dry season than in the rainy season. Only 24% of the AMF morphotypes present could be identified to species level, since most of them did not fit published descriptions available. It is important to perform an exhaustive sampling of spores in the different seasons throughout the year and at different soil depths to obtain an accurate view of AMF spore diversity associated with a particular ecosystem.


2019 ◽  
Vol 20 (2) ◽  
pp. 405-412 ◽  
Author(s):  
PENPITCHA CHOOSA-NGA ◽  
UTHAIWAN SANGWANIT ◽  
THARNRAT KAEWGRAJANG

Choosa-Nga P, Sangwanit U, Kaewgrajang T. 2019. The Arbuscular Mycorrhizal Fungi’s diversity in Fabaceous trees species of Northeastern Thailand. Biodiversitas 20: 405-412. The species diversity of arbuscular mycorrhizal (AM) fungi, found in three Fabaceous tree species, namely, Dalbergia cochinchinensis, Pterocarpus macrocarpus and Xylia xylocarpa, was studied. Sixty rhizosphere soil samples were collected from the tree species plantations, and AM fungal spores were extracted and identified using their morphological characteristics. The spore density and species diversity of the fungi associated with these Fabaceous tree species was assessed. The 11 AM fungi morphospecies identified were Acaulospora (3 species), Glomus (6 species), Sclerocystis (1 species) and Scutellospora (1 species). Meanwhile, three species remained unidentified, which Unknown sp.2 was frequently found in all the three of plantations. The Shannon-Weiner diversity index of the fungal species ranged from 1.40 to 1.88, while the Evenness index ranged from 0.58 to 0.76. The diversity and Evenness index was the highest in the D. cochinchinensis plantation and lowest in the X. xylocarpa plantation. These differences may be due to differences in soil characteristics, including moisture, % organic matter, and nutrient composition. The species composition of AM fungi in the P. macrocarpus plantation was not similar with the D. cochinchinensis and X. xylocarpa plantations. It was indicated that different plant species were hosts to different AM fungal communities. Therefore, further studies are required to select the appropriate AM fungal species which have a positive effect on the growth of the three Fabaceous species when we would like to do the inoculating programs.


Sign in / Sign up

Export Citation Format

Share Document