scholarly journals Callogenesis optimization of some globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori] cultivars based on in vivo and in vitro leaf explants

2020 ◽  
Vol 48 (4) ◽  
pp. 1873-1884
Author(s):  
Tugce OZSAN ◽  
Ahmet N. ONUS

Globe artichoke’s [Cynara cardunculus var. scolymus (L.) Fiori] leaves are rich in polyphenols and due to health-promoting properties artichoke growing has been gaining interest. Optimization and development of valuable bioactive components, which are not in the standard amount in raw material can be achieved and increased with the assistance of in vitro techniques such as callus and subsequently cell suspension cultures. Therefore, in the present study in vitro callogenesis optimization of three globe artichoke cultivars was studied by using 29 different media combinations, based on basic Gamborg B5 medium supplemented with various concentrations of 1-Naphthaleneacetic acid (NAA), 6-Benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2,4-D), and Kinetin. Comparisons were made on the basis of using in vivo and in vitro leaves as explant material. In the experiment several parameters such as leaf explants development (%), callus formation (%), and callus weight (g) were assessed for each related cultivar. Results revealed that having auxin: cytokinin concentrations together at enough and well-balanced, having equal amounts or 10:1 concentrations of auxin: cytokinin, concentrations in media combinations are indispensable for stimulating the callogenesis in globe artichoke. The findings of the present study clearly revealed that, there were differences among cultivars regarding callus induction by using in vivo and in vitro leaf explants while in vivo leaf explants came into prominence regarding callus formation and weights. It is assumed that the findings of the present study may play a complementary and auxiliary role in several areas such as pharmaceutical engineering of globe artichoke.

2020 ◽  
Vol 48 (4) ◽  
pp. I-X
Author(s):  
Radu E. SESTRAS

Notulae Botanicae Horti Agrobotanici Cluj-Napoca (NBHA): The papers published in Issue 4, Volume 48, 2020 represent new exciting researches in different topics of life science, respectively in plant science, horticulture, agronomy and crop science. Among the interesting articles we invite you to find news about: Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science; A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.); Plantation forestry in Malaysia: an evaluation of its successes and failures since the 1970; Transcriptome analysis to identify genes involved in lignan, sesquiterpenoid and triterpenoid biosynthesis in medicinal plant Kadsura heteroclite; Molecular cloning and characterization of a lipoxygenase gene (CsLOX1) from cucumber; Genetic relationship of mungbean and blackgram genotypes based on agronomic and photosynthetic performance and SRAP markers; Callogenesis optimization of some globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori] cultivars based on in vivo and in vitro leaf explants; Chemical composition and antimicrobial and antioxidant activities of Tunisian, France and Austrian Laurus nobilis (Lauraceae) essential oils etc. The new Impact Factor communicated by ISI Clarivate, June 29, 2020, is IF 2019 = 1.168 (position 149 of 234 journals, Q3 in Plant Sciences). New metrics in Scopus – Elsevier (June 22, 2020): CiteScore 1.40 (#43/84 in Horticulture); SJR 0.35 - Q2, #41/90 in Horticulture (SJR Scimago Journal).


Author(s):  
Kicia K. P. Gomes- Copeland ◽  
Izulmé R. I. Santos ◽  
Amanda G. Torres ◽  
João V. D. Gomes ◽  
Fabrício T. C. de Almeida ◽  
...  

Amaryllidaceae include plant species that present alkaloids with analgesic, anti-cancer, anti-bacterial, anti-viral, anti-fungal and anti-malarial activities. Due to this pharmacological value, several species of this family have been widely studied and among them is White lilly, Crinum americanum. The objective of this work was to induce callogenesis on leaf explants of C. americanum cultivated in vitro for future production of alkaloids. Leaf explants were grown on a culture medium (solid) Murashige and Skoog (1962) supplemented with different concentrations and combinations of plant growth regulators, auxin 2,4-dichlorophenoxyacetic acid and cytokinin 6-benzylaminopurine and their effect on callogenesis assessed for percentage oxidation and explants responsive to callus induction. Callus formation started 10 days after hormone inoculation, and within 30 days after inoculation the best callogenesis and callus biomass growth were observed in medium containing 2.5 mg L-1 of 2,4-dichlorophenoxyacetic acid and 10 mg L-1 of 6-benzylaminopurine. The lowest percentage of oxidation was observed on explants cultivated on medium containing 5 mg L-1 of 6-benzylaminopurine and 2.5 mg L-1 of 2,4-dichlorophenoxyacetic acid. The calli obtained were compact and embryogenic. This work contributes not only to future studies on in vitro callogenesis of this species, but also to a possible protocol for the production of alkaloids of interest from cell suspension cultures produced in vitro. This is the first report of callus formation in Crinum americanum explants.


HortScience ◽  
1996 ◽  
Vol 31 (7) ◽  
pp. 1225-1228 ◽  
Author(s):  
Rida A. Shibli ◽  
M.A.L. Smith

Ohelo (V. pahalae Skottsb.) and bilberry (V. myrtillus L.) shoots were regenerated via direct organogenesis from whole leaves and leaf sections and also from hypocotyl explants of bilberry. Explants preincubated for 1 to 2 weeks in darkness yielded ≈75% regeneration frequencies and the highest number of regenerating shoots/explant on TDZ-supplemented media (0.9 to 2.7 μm). When 2iP or zeatin were substituted as the cytokinin source, frequencies of regeneration and shoot productivity were significantly lower. Explants held under constant illumination (no dark pretreatment) had significantly lower regeneration frequencies in all tested cytokinin-supplemented media. 2,4-D stimulated callus formation, but did not support regeneration from vegetative explants. Cells from callus and suspension cultures did not exhibit regeneration in any of the media that supported organogenesis from leaves. Regenerants were successfully micropropagated, although callus formation caused by zeatin and high 2iP levels interfered with shoot proliferation. Zeatin induced hyperhydricity in shoots from both species, but more severely in ohelo. Ex vitro rooting after treatment with 4.9 μm IBA or 5.4 μm NAA was 95% and 60% successful for bilberry and ohelo, respectively, and plants were readily acclimatized after an interval in a fog chamber. Bilberry microshoots also rooted in vitro in the absence of growth regulator treatment. Chemical names used: 1H-indole-3-butanoic acid (IBA); N-(3-methyl-2-butenyl)-1-H-purine-6-amine (2iP); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA); thidiazuron=1-phenyl-3-(1,2,3-thiadiazio-5-yl)urea (TDZ); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-(4-hydroxy-3-methylbut-2-enylamino) purine (zeatin).


2011 ◽  
Vol 3 (5) ◽  
pp. 491-494
Author(s):  
Dr. Haritha Kumari Nimmagadda ◽  
◽  
Pooja Pant Pooja Pant ◽  
Rajeev Mukhia ◽  
Dr. Aruna Mukherjee

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1120G-1120
Author(s):  
J. L. Jacobs ◽  
C. T. Stephens

Several growth hormone combinations and silver nitrate concentrations were examined for their effect on regeneration of different pepper genotypes. Primary leaf explants from in vitro seedlings were cultured on a revised Murashige and Skoog medium supplemented with auxin, cytokinin and 1.6% glucose. Combinations of different concentrations of indole-3-acetic acid (IAA), 0-5 mg/l, and 6-benzylaminopurine (BAP), 0-5 mg/l, were tested to determine the most effective medium for shoot primordium formation. Experiments with IAA and BAP did not result in a specific growth hormone combination appropriate for regeneration of all genotypes tested. Of the silver nitrate concentrations tested, 10 mg/l resulted in the best shoot and leaf differentiation and reduced callus formation. Differences in organogenic response of individual genotypes were evaluated on a single regeneration medium. Whole plants were regenerated from 11 of 63 genotypes examined. Based on these experiments, a reproducible regeneration system for pepper was developed with a total of 500 plants regenerated to date.


2019 ◽  
Vol 33 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
Cornelia Wiegand ◽  
Martin Abel ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Michael Zieger ◽  
...  

Background Application of controlled in vitro techniques can be used as a screening tool for the development of new hemostatic agents allowing quantitative assessment of overall hemostatic potential. Materials and methods Several tests were selected to evaluate the efficacy of cotton gauze, collagen, and oxidized regenerated cellulose for enhancing blood clotting, coagulation, and platelet activation. Results Visual inspection of dressings after blood contact proved the formation of blood clots. Scanning electron microscopy demonstrated the adsorption of blood cells and plasma proteins. Significantly enhanced blood clot formation was observed for collagen together with β-thromboglobulin increase and platelet count reduction. Oxidized regenerated cellulose demonstrated slower clotting rates not yielding any thrombin generation; yet, led to significantly increased thrombin-anti-thrombin-III complex levels compared to the other dressings. As hemostyptica ought to function without triggering any adverse events, induction of hemolysis, instigation of inflammatory reactions, and initiation of the innate complement system were also tested. Here, cotton gauze provoked high PMN elastase and elevated SC5b-9 concentrations. Conclusions A range of tests for desired and undesired effects of materials need to be combined to gain some degree of predictability of the in vivo situation. Collagen-based dressings demonstrated the highest hemostyptic properties with lowest adverse reactions whereas gauze did not induce high coagulation activation but rather activated leukocytes and complement.


1985 ◽  
Vol 13 (4) ◽  
pp. 261-266
Author(s):  
P.P. Monro ◽  
D.P. Knight ◽  
W.S. Pringle ◽  
D.M. Fyfe ◽  
J.R. Shearer

The toxicity of implant materials requires investigation prior to clinical use. We have developed a method where materials are directly applied to the chorioallantoic membrane (CAM) of 9-day-old chick embryos and toxicity is assessed using histological criteria. We evaluated the method using metal foils. The number and organisation of fibroblasts seemed to be the most useful criteria for assessing metal toxicity. Differences were greatest after 10 days of culture on the CAM. The method is sensitive enough to enable us to discriminate between the less toxic aluminium and titanium and the highly toxic cobalt, nickel and tungsten. The proposed method has advantages over in vitro techniques which provide an abnormal fluid environment and in which the more complex interactions that are possible between implant materials and tissue in vivo cannot be modelled.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


2010 ◽  
Vol 40 (10) ◽  
pp. 2210-2213
Author(s):  
Monalize Salete Mota ◽  
Juliana de Magalhães Bandeira ◽  
Eugenia Jacira Bolacel Braga ◽  
Valmor João Bianchi ◽  
José Antonio Peters

A shoot regeneration system for Plectranthus neochilus was studied from leaf explants. Leaves developed under in vitro conditions were cultured on Wood Plant Medium supplemented with 0.2mg dm-3 α-naphthaleneacetic acid (NAA) and different 6-benzilaminopurine (BAP) or thidiazuron (TDZ) concentrations (0, 1.5, 3.0, 4.5 and 6.0mg dm-3). An increase in percentage of responsive explants (85.3%) and in the number of shoots developed per explant (3.2) was observed when the explants were treated with 5.3 and 4.7mg dm-3 BAP, respectively. The leaf explants cultured on media supplemented with TDZ became vitreous and did not form buds. The regeneration system used is efficient for boldo bud induction and shoot development, showing high potential for advanced cellular and molecular studies.


1984 ◽  
Vol 62 (7) ◽  
pp. 1393-1397 ◽  
Author(s):  
M. D. Zhou ◽  
T. T. Lee

The callus-promoting activity of most commonly known as well as some rarely tested auxins was compared with that of 2,4-dichlorophenoxyacetic acid (2,4-D) for in vitro culture of the excised embryo of spring and winter wheat (Triticum aestivum L.), cv. Chinese Spring and cv. Fredrick. Different auxins in a concentration range from 1 to 50 μM showed widely different activities. Also the two wheat cultivars responded differently to the auxins. When rapid callus formation with limited root growth was used as the basis for comparison, 2-(2-methyl-4-chlorophenoxy)propionic acid (2-MCPP), α-naphthaleneacetic acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6,trichloropicolinic acid (picloram), γ-(2,4-dichlorophenoxy)butyric acid, 2,4,5-trichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxypropionic acid, in the order of effectiveness, were superior to 2,4,-D for callus induction from the embryo of 'Chinese Spring,' although the concentration required was higher than that of 2,4-D. For the winter wheat 'Fredrick,' however, only picloram, dicamba, and 2-MCPP performed as well as 2,4-D. All auxins tested promoted shoot growth; 2-methyl-4-chlorophenoxypropionic acid was most effective for 'Chinese Spring,' whereas picloram was most effective for 'Fredrick.'


Sign in / Sign up

Export Citation Format

Share Document