scholarly journals Soil Seed Bank Dynamics of a Riparian Forest and its Adjacent Upland Vegetation

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Omowumi Omotoyosi OLALOYE ◽  
Samson Olajide OKE
2016 ◽  
Vol 8 (1) ◽  
pp. 118-124
Author(s):  
Omowumi Omotoyosi OLALOYE ◽  
Samson Olajide OKE

The present study was conducted to determine the densities and soil seed bank composition of a riparian forest and its adjacent upland vegetation for a better understanding the potentials of the soil seed banks in facilitating succession towards a more natural forest of native tree species. Three contiguous 20 m x 20 m plots were systematically established on both riparian forest and upland vegetation. Species enumeration, identification and distribution into families of the standing vegetation were carried out. Furthermore, five replicates soil samples were collected at two different depths (0-15 cm, 15-30 .The seedling emergence test was carried out for six months in the greenhouse to determine the species composition and the density of the seed in both vegetation types. The results of the seedling emergence revealed that more seeds were deposited at the upper depth (0-15 cm) than the lower depth 15-30 cm in the two vegetation types in both dry and rainy season. There was low similarity in species composition between the standing vegetation and soil seed bank in each of the two vegetation types. Herbaceous species recorded the highest number of seedlings as compared to the other habit. The low similarity between seed bank and standing vegetation of the riparian forest and the adjacent upland vegetation suggested that soil seed bank was insignificant in their restoration. 


2020 ◽  
Author(s):  
Orsolya Valkó ◽  
Balázs Deák ◽  
Péter Török ◽  
Katalin Tóth ◽  
Réka Kiss ◽  
...  

AbstractSowing grass seeds generally supports the rapid development of a closed perennial vegetation, which makes the method universally suitable for fast and effective landscape-scale restoration of grasslands. However, sustaining the recovered grasslands, and increasing their diversity is a challenging task. Understanding the role of seed bank compositional changes and vegetation dynamics contributes to designating management regimes that support the establishment of target species and suppress weeds. Our aim was to reveal the effect of post-restoration management on the vegetation and seed bank dynamics in grasslands restored in one of the largest European landscape-scale restoration projects. Eight years after restoration we sampled the vegetation and seed bank in a total of 96 plots located in 12 recovered grasslands in the Great Hungarian Plain. In each recovered grassland stand we designated a mown (mown from Year 1 to Year 8) and an abandoned sample site (mown from Year 1 to Year 3 then abandoned from Year 4 to Year 8). Mown and abandoned sites showed divergent vegetation and seed bank development. Abandonment led to the decline of sown grasses and higher cover of weeds, especially in the alkaline grasslands. Our study confirmed that seed bank has a limited contribution to the maintenance of biodiversity in both grassland types. We found that five years of abandonment had a larger effect on the seed bank than on the vegetation. We stress that long-term management is crucial for controlling the emergence of the weeds from their dense seed bank in restored grasslands.Implications for practiceSeed sowing of grass mixtures can be a feasible tool for restoring grasslands at large scales. However, the developed vegetation usually has low biodiversity and a high seed density of weeds is typical in the soil seed bank even several years after the restoration. Therefore, post-restoration management is necessary for suppressing weeds both aboveground and belowground.We recommend to design the long-term management of the sites subjected to grassland restoration already in the planning phase of the restoration projects and ensure that the management plan is ecologically and economically feasible.We recommend to complement the monitoring of vegetation with the analysis of soil seed bank for evaluating restoration success.


2008 ◽  
Vol 30 (2) ◽  
pp. 100-110 ◽  
Author(s):  
Fernanda Costa Maia ◽  
Manoel de Souza Maia ◽  
Renée M. Bekker ◽  
Rogério Previatti Berton ◽  
Leandro Sebastião Caetano

The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds


2013 ◽  
Vol 31 (2) ◽  
pp. 267-279 ◽  
Author(s):  
E. Soltani ◽  
A. Soltani ◽  
S. Galeshi ◽  
F. Ghaderi-Far ◽  
E. Zeinali

Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03). The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.


2003 ◽  
Vol 14 (3) ◽  
pp. 375-386 ◽  
Author(s):  
Marcelo Sternberg ◽  
Mario Gutman ◽  
Avi Perevolotsky ◽  
Jaime Kigel

1995 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
JW Morgan

The seasonal dynamics of the soil seed bank of Rutidosis leptorrhynchoides F.Muell. were studied by the seedling emergence technique. Seed longevity in soil was quantified in a seed burial and retrieval experiment. The importance of annual seed production to recruitment was also determined over a 2-year-period, as was the impact of conspecific neighbour density on seed production per inflorescence. Rutidosis leptorrhynchoides appears to form a transient seed bank with little capacity to store germinable seeds in the soil from year to year. No seedlings were observed in soil sampled after the autumn germination pulse and no viable seed was present in the soil within 16 weeks of burial. The rate of seed loss was similar when seed was buried under all intact grassland canopy and in 0.25m2 canopy gaps. It appears that most seeds simply rot in moist soil or are predated by soil invertebrates. Seedling recruitment was at least 15 times greater in plots where natural seed input occurred than where it was curtailed. Less than 10% of seed shed resulted in seedling emergence. It is suggested that recruitment in the large populations studied was limited by germination rather than by microsite availability for seedling survival. Population density had an impact on seed production with sparsely distributed individuals producing fewer seeds per inflorescence than plants from denser colonies, although there was much variation. Sparse plants produced significantly fewer seeds per inflorescence than hand crosspollinated heads suggesting reduced pollinator efficacy in these colonies relative to larger colonies where there was no such difference. Rutidosis leptorrhynchoides is dependent on the maintenance of the standing population for recruitment. Any factors that influence flowering and subsequent seed production will limit the ability of the species to regenerate. Over sufficient time, this could lead to the localised extinction of the species and may explain why R. leptorrhynchoides has failed to reappear in remnants where a suitable fire regime has been re-implemented after a period of management unfavourable to the survival, flowering and regeneration of this species.


Sign in / Sign up

Export Citation Format

Share Document