scholarly journals Arbuscular Mycorrhizal Fungal Diversity in Sugarcane Rhizosphere in Relation with Soil Properties

2012 ◽  
Vol 4 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Promita DATTA ◽  
Mohan KULKARNI

Arbuscular mycorrhizal (AM) species diversity and their root colonization patterns may vary in a plant species as influenced by soil environmental and biological factors. In the present study, sugarcane rhizospheric soils were collected from 41 main sugarcane producing tehsil places belonging to 10 districts from Maharashtra, India. Rhizospheric soil samples and roots were analyzed for spore density, relative abundance and frequency of AM spores at genus as well as at species level, extent of AM colonization in roots and various soil chemical properties. Soil sample from Jalgaon district possessed maximum spore density and AM root colonization. Genus Glomus exhibited highest relative abundance with maximum frequency of 32.55%. Species wise, Glomus fasciculatum possessed highest relative abundance and maximum frequency was observed in case of Glomus fasciculatum, Glomus intraradices, Glomus mosseae and Glomus versiforme. Maximum similarity of AM spores was recorded between Satara and Sangli districts which may be because of almost similar soil pH profile. Data obtained after cluster analysis represented the close relationship between spore density, AM root colonization and soil Cu, Zn and Fe concentrations. A statistically significant positive correlation was also found when AM spore density and root colonization was compared with soil Cu, Zn and Fe contents. This kind of data can be used to predict type of AM fungi to be used as bioinoculant in particular region.

Author(s):  
Hari Prasad Kante ◽  
Laxmi Kanth Mhadgula

The arbuscular mycorrhizal (AM) fungal association in the rhizosphere soils of Setaria italica (L.) P. Beauv. from 8 Mandals of Mahabubnagar district, Telangana state, India, were studied. A significant number of AM fungi were identified in the present study, i.e., 53. Among the 53 AM fungi, Glomus was represented by 23 species, Acaulospora with 11, Sclerocystis with 6, Scutellospora with 5, Gigaspora with 4, and Funneliformis with 2, Ambispora and Archaeospora with 1 species. Glomus fasciculatum was the dominant species among the Glomus genera isolated from the rhizosphere soil samples of 34 villages in Mahabub Nagar district of Telangana State. The AM fungi spore density ranged from 74 to 270 per 100 gm soil (average 145), while the root colonization ranged from 50.67% to 93.33% (average 75.71%). This study provides valuable information on AM fungal association in Setaria italica.


2017 ◽  
Vol 6 (06) ◽  
pp. 5415
Author(s):  
Mane S. R. ◽  
Kumbhar V. R. ◽  
Birajdar G. M. ◽  
Naryankar R. S. ◽  
Gavali M. T. ◽  
...  

Clitoria ternatea L. is an excellent herbal medicinal plant. Arbusular Mycorrhizal fungal (AMF) colonization and biomass of three different tested conditions of Clitoria ternatea plant was investigated. Inoculums of indigenous AMF and Trichoderma harzianum was tested greenhouse experiment and compared with natural condition after 60th days of treatment. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies in different land. Among three different conditions, natural conditions showed maximum root colonization (75.89%) than treated one but minimum spore density (358.8/100gsoil). Highest spore density (481.6/100g soil) was found in T. harzianum treated condition followed by indigenous AMF treatment Acaulospora Glomus and Sclerocystis these three genera were found frequently. AMF inoculums and T.harzianum treatments conditions were observed promising biomass data of 60th days after treatment (DAT).When AMF are more colonized to plants then enhanced the biomass productivity.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 442D-442
Author(s):  
S. Bergeron ◽  
M.-P. Lamy ◽  
B. Dansereau ◽  
S. Gagne ◽  
S. Parent ◽  
...  

While the majority of terrestial plants are colonized in soils by vesicular-arbuscular fungi (AM), that does not mean that these species can form a symbiosis with AM fungi in an artificial substrate under commercial production conditions. The purpose of this study was to identify those plants having a colonization potential. In Mar. 1998, 51 species and cultivars of ornamental plants were inoculated with two vesicular-arbuscular fungi (Glomus intraradices Schenk & Smith, and Glomus etunicatum Becker & Gerdemann; Premier Tech, Rivière-du-Loup, Quèbec). Periodic evaluations of colonization were done 5, 7, 9, 12, and 16 weeks after seeding. More than 59% of these plants tested were shown to have a good colonization potential with G. intraradices. Species belonging to the Compositae and Labiatae families all colonized. Species in the Solanaceae family showed slight to excellent colonization. Several species studied belonging to the Amaranthaceae, Capparidaceae, Caryophyllaceae, Chenopodiaceae, Cruciferae, Gentianaceae, Myrtaceae et Portulaceae families were not colonized. Root colonization with G. etunicatum was not detected on these species and cultivars during this short experimental period.


2011 ◽  
Vol 3 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Mohd AYOOB ◽  
Irfan AZIZ ◽  
Paramjit Kaur JITE

Catharanthus roseus L. (Apocynaceae), a valuable medicinal plant with potential therapeutic value was inoculated with AM fungi Glomus fasciculatum under three different phosphate conditions. Catharanthus roseus plants raised in presence of the AM fungi showed increased growth in terms of (shoot length, root length, leaf number, fresh weight and dry weight). Total chlorophyll content and phosphate content of the shoot was found to be significantly higher in AM inoculated plants as compared to non AM Catharanthus plants. The activities of phosphatase enzymes were found to be increased in AM inoculated plants as compared to non AM plants. Root colonization percent was significantly higher in AM inoculated plants at zero and at all three phosphate levels after 60, 90 and 120 days of AM inoculation, but decreased at third phosphate level after 120 days of AM inoculation. The study suggests that Catharanthus roseus is dependent on the mycorrhizal fungi to a large extent for its growth and survival and also shows the potential of AM fungi Glomus fasciculatum in increasing growth and biomass of Catharanthus roseus L.


2000 ◽  
Vol 66 (6) ◽  
pp. 2526-2530 ◽  
Author(s):  
Teresa E. Pawlowska ◽  
Rufus L. Chaney ◽  
Mel Chin ◽  
Iris Charvat

ABSTRACT Phytoextraction involves use of plants to remove toxic metals from soil. We examined the effects of phytoextraction practices with three plant species (Silene vulgaris, Thlaspi caerulescens, and Zea mays) and a factorial variation of soil amendments (either an ammonium or nitrate source of nitrogen and the presence or absence of an elemental sulfur supplement) on arbuscular mycorrhizal (AM) fungi (Glomales, Zygomycetes) at a moderately metal-contaminated landfill located in St. Paul, Minn. Specifically, we tested whether the applied treatments affected the density of glomalean spores and AM root colonization in maize. Glomalean fungi from the landfill were grouped into two morphotypes characterized by either light-colored spores (LCS) or dark-colored spores (DCS). Dominant species of the LCS morphotype were Glomus mosseae and an unidentified Glomus sp., whereas the DCS morphotype was dominated by Glomus constrictum. The density of spores of the LCS morphotype from the phytoremediated area was lower than the density of these spores in the untreated landfill soil. Within the experimental area, spore density of the LCS morphotype in the rhizosphere of mycorrhizal maize was significantly higher than in rhizospheres of nonmycorrhizal S. vulgaris or T. caerulescens. Sulfur supplement increased vesicular root colonization in maize and exerted a negative effect on spore density in maize rhizosphere. We conclude that phytoextraction practices, e.g., the choice of plant species and soil amendments, may have a great impact on the quantity and species composition of glomalean propagules as well as on mycorrhiza functioning during long-term metal-remediation treatments.


2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


2012 ◽  
Vol 78 (10) ◽  
pp. 3630-3637 ◽  
Author(s):  
Karol Krak ◽  
Martina Janoušková ◽  
Petra Caklová ◽  
Miroslav Vosátka ◽  
Helena Štorchová

ABSTRACTReal-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates ofGlomus intraradicessensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.


2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


1999 ◽  
Vol 77 (6) ◽  
pp. 891-897 ◽  
Author(s):  
Alexandra Pinior ◽  
Urs Wyss ◽  
Yves Piché ◽  
Horst Vierheilig

The effect of root exudates from non-mycorrhizal and mycorrhizal cucumber (Cucumis sativus L.) plants colonized by one of three arbuscular mycorrhizal fungi (Gigaspora rosea Nicolson & Schenck, Glomus intraradices Smith & Schenck, or Glomus mosseae (Nicolson & Gerdemann) Gerd. & Trappe) on hyphal growth of Gi. rosea and G. intraradices in axenic culture and on root colonization by G. mosseae in soil was investigated. Root exudates from non-mycorrhizal cucumber plants clearly stimulated hyphal growth, whereas root exudates from all mycorrhizal cucumber plants tested showed no stimulation of the hyphal growth of Gi. rosea and only a slight stimulation of the hyphal growth of G. intraradices. Moreover, root exudates from all mycorrhizal cucumber plants inhibited root colonization by G. mosseae compared with the water-treated controls. These results suggest that plants colonized by AM fungi regulate further mycorrhization via their root exudates.Key words: Glomales, Gigaspora rosea, Glomus intraradices, Glomus mosseae, root exudates, regulation.


Sign in / Sign up

Export Citation Format

Share Document