scholarly journals CHANGES IN THE STRUCTURE OF THE PHENOLIC ANTIOXIDANT IRGANOX 1010 IN THE COMPOSITION OF THE ZINC-CONTAINING POLYMER COMPOSITE WITH CYCLIC THERMAL EFFECTS

2018 ◽  
Vol 67 (11) ◽  
pp. 232-239
Author(s):  
Elena Valerievna Vorobyova ◽  
Author(s):  
Yin Gao ◽  
Mike McHenry

Engineered polymer composite (EPC) ties offer a potential alternative to solid sawn timber ties. These materials are especially attractive for use in regions where wood is susceptible to degradation by moisture and decay organisms. However, recent research at the Transportation Technology Center’s (TTC) Facility for Accelerated Service Testing (FAST) in Pueblo, CO, found that track supported by EPC ties experienced more gage widening variation due to temperature changes than track supported by wood ties. Specifically, the track gage was about 0.2-in. wider in the afternoon than that in the morning on the EPC tie tracks. It is believed that the direct sunlight in the afternoon makes the top surface of the tie expand more than the other parts of the tie, thereby causing the EPC ties to bend and widen track gage. Another observation related to the EPC thermal bending effect is changes to the ballast support condition. When temperatures are cooler, EPC ties tend to experience a center-bound ballast support condition, therefore generating more bending stress on the ties. This paper presents results from computer simulations of the thermal behavior of EPC ties. Future study will focus on field testing to further understand the thermal effects in support of recommendations on the use of EPC ties.


Author(s):  
K.C. Newton

Thermal effects in lens regulator systems have become a major problem with the extension of electron microscope resolution capabilities below 5 Angstrom units. Larger columns with immersion lenses and increased accelerating potentials have made solutions more difficult by increasing the power being handled. Environmental control, component choice, and wiring design provide answers, however. Figure 1 indicates with broken lines where thermal problems develop in regulator systemsExtensive environmental control is required in the sampling and reference networks. In each case, stability better than I ppm/min. is required. Components with thermal coefficients satisfactory for these applications without environmental control are either not available or priced prohibitively.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2016 ◽  
Vol 2 (2) ◽  
pp. 37-42 ◽  
Author(s):  
E. N. Kablov ◽  
L. V. Chursova ◽  
A. N. Babin ◽  
R. R. Mukhametov ◽  
N. N. Panina

Sign in / Sign up

Export Citation Format

Share Document