Stochastic Analysis of Route Request Packet Propagation in Reactive Ad Hoc Sensor Network and Its Application to Optimizing the Number of Rebroadcasting Nodes

Author(s):  
Mitsuru ISHII ◽  
Daisuke TAKAGO
2021 ◽  
Vol 13 (04) ◽  
pp. 21-37
Author(s):  
Priyanka Pandey ◽  
Raghuraj Singh

Mobile Ad hoc Network (MANET) is mainly designed to set up communication among devices in infrastructure-less wireless communication network. Routing in this kind of communication network is highly affected by its restricted characteristics such as frequent topological changes and limited battery power. Several research works have been carried out to improve routing performance in MANET. However, the overall performance enhancement in terms of packet delivery, delay and control message overhead is still not come into the wrapping up. In order to overcome the addressed issues, an Efficient and Stable-AODV (EFST-AODV) routing scheme has been proposed which is an improvement over AODV to establish a better quality route between source and destination. In this method, we have modified the route request and route reply phase. During the route request phase, cost metric of a route is calculated on the basis of parameters such as residual energy, delay and distance. In a route reply phase, average residual energy and average delay of overall path is calculated and the data forwarding decision is taken at the source node accordingly. Simulation outcomes reveal that the proposed approach gives better results in terms of packet delivery ratio, delay, throughput, normalized routing load and control message overhead as compared to AODV.


Author(s):  
Ejaz Ahmed ◽  
Salman Ali ◽  
Adnan Akhunzada ◽  
Ibrar Yaqoob

This chapter provides a review of design practices in network communication for Cognitive Radio Sensor Networks. The basics of networking and Medium Access Control functionalities with focus on data routing and spectrum usage are discussed. Technical differences manifest in various network layouts, hence the role of various specialized nodes, such as relay, aggregator, or gateway in Cognitive Radio Sensor Networks need analysis. Optimal routing techniques suitable for different topologies are also summarized. Data delivery protocols are categorized under priority-based, energy-efficient, ad hoc routing-based, attribute-based, and location-aware routing. Broadcast, unicast, and detection of silence periods are discussed for network operation with slotted or unslotted time. Efficient spectrum usage finds the most important application here involving use of dynamic, opportunistic, and fixed spectrum usage. Finally, a thorough discussion on the open issues and challenges for Cognitive Radio Sensor Network communication and internetworking in Cognitive Radio Sensor Network-based deployments and methods to address them are provided.


Sign in / Sign up

Export Citation Format

Share Document