scholarly journals Comparison of Shoulder Stabilizer Muscle Activations during Push Up Plus Exercise by with Cervical Flexion and Extension

2011 ◽  
Vol 23 (1) ◽  
pp. 111-113 ◽  
Author(s):  
Sangyeol Lee ◽  
Jintae Han ◽  
Minchull Park ◽  
Myounghee Lee ◽  
Jemyung Shim
2018 ◽  
Vol 50 (5S) ◽  
pp. 30-31
Author(s):  
Melanie Poudevigne ◽  
Moroni Demoors ◽  
Thomas Andre ◽  
Hae Chung

2017 ◽  
Vol 51 (4) ◽  
pp. 363.3-364 ◽  
Author(s):  
Kam-Ming Mok ◽  
Christianne On Nor Anna Ho ◽  
Patrick Shu-Hang Yung ◽  
Kai-Ming Chan
Keyword(s):  

Author(s):  
Ben Warnock ◽  
Danielle L. Gyemi ◽  
Evan Brydges ◽  
Jennifer M. Stefanczyk ◽  
Charles Kahelin ◽  
...  

Background: Muscle activations (MA) during maximum voluntary contractions (MVC) are commonly utilized to normalize muscle contributions. Isometric MVC protocols may not activate muscles to the same extent as during dynamic activities, such as falls on outstretched hands (FOOSH), that can occur during sport or recreational activities. Objective: The purpose of this study was to compare the peak MA of upper extremity muscles during isometric and dynamic MVC protocols. Methods: Twenty-four (12 M, 12 F) university-aged participants executed wrist and elbow flexion and extension actions during five-second MVC protocols targeting six upper extremity muscles (three flexors and three extensors). Each protocol [isometric (ISO); dynamic (eccentric (ECC), concentric (CON), elastic band (ELAS), un-resisted (UNRES)] consisted of three contractions (with one-minute rest periods between) during two sessions separated by one week. Muscle activation levels were collected using standard electromyography (EMG) preparations, electrode placements and equipment reported previously. Results: Overall, the ECC and CON dynamic protocols consistently elicited higher peak muscle activation levels than the ISO protocol for both males and females during both sessions. Over 95% of the CON trials resulted in mean and peak muscle activation ratios greater than ISO, with 56.3% being significantly greater than ISO (p < 0.05). Conclusion: Higher activation levels can be elicited in upper extremity muscles when resistance is applied dynamically through a full range of motion during MVC protocols.


2004 ◽  
Vol 9 (5) ◽  
pp. 1-11
Author(s):  
Patrick R. Luers

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, defines a motion segment as “two adjacent vertebrae, the intervertebral disk, the apophyseal or facet joints, and ligamentous structures between the vertebrae.” The range of motion from segment to segment varies, and loss of motion segment integrity is defined as “an anteroposterior motion of one vertebra over another that is greater than 3.5 mm in the cervical spine, greater than 2.5 mm in the thoracic spine, and greater than 4.5 mm in the lumbar spine.” Multiple etiologies are associated with increased motion in the cervical spine; some are physiologic or compensatory and others are pathologic. The standard radiographic evaluation of instability and ligamentous injury in the cervical spine consists of lateral flexion and extension x-ray views, but no single pattern of injury is identified in whiplash injuries. Fluoroscopy or cineradiographic techniques may be more sensitive than other methods for evaluating subtle abnormal motion in the cervical spine. The increased motion thus detected then must be evaluated to determine whether it represents normal physiologic motion, normal compensatory motion, motion related to underlying degenerative disk and/or facet disease, or increased motion related to ligamentous injury. Imaging studies should be performed and interpreted as instructed in the AMA Guides.


2011 ◽  
Author(s):  
Nicole E. Noll ◽  
Andrew Karpinski

2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.


1991 ◽  
Vol 13 (6) ◽  
pp. 329-335 ◽  
Author(s):  
Michael T. Gross ◽  
Greta M. Huffman ◽  
Cheryl N. Phillips ◽  
J. Ann Wray

Author(s):  
Mansoor Amiri ◽  
Farhad Tabatabai Ghomsheh ◽  
Farshad Ghazalian

The purpose of this study was to model the resistance mechanism of Passive Knee Joint Flexion and Extension to create a similar torque mechanism in rehabilitation equipment. In order to better model the behavior of passive knee tissues, it is necessary to exactly calculate the two coefficients of elasticity of time-independent and time-dependent parts. Ten healthy male volunteers (mean height 176.4+/−4.59 cm) participated in this study. Passive knee joint flexion and extension occurred at velocities of 15, 45, and 120 (degree/s), and in five consecutive cycles and within the range of 0 to 100° of knee movement on the sagittal plane on Cybex isokinetic dynamometer. To ensure that the muscles were relaxed, the electrical activity of knee muscles was recorded. The elastic coefficient, (KS) increased with elevating the passive velocity in flexion and extension. The elastic coefficient, (KP) was observed to grow with the passive velocity increase. While, the viscous coefficient (C) diminished with passive velocity rise in extension and flexion. The heightened passive velocity of the motion resulted in increased hysteresis (at a rate of 42%). The desired of passive velocity is lower so that there is less energy lost and the viscoelastic resistance of the tissue in the movement decreases. The Coefficient of Determination, R2 between the model-responses and experimental curves in the extension was 0.96 < R2 < 0.99 and in flexion was 0.95 < R2 < 0.99. This modeling is capable of predicting the true performance of the components of passive knee movement and we can create a resistance mechanism in the rehabilitation equipment to perform knee joint movement. Quantitative measurements of two elastic coefficients of Time-independent and Time-dependent parts passive knee joint coefficients should be used for better accurate simulation the behavior of passive tissues in the knee which is not seen in other studies.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3422
Author(s):  
Jian-Zhi Lin ◽  
Wen-Yu Chiu ◽  
Wei-Hsun Tai ◽  
Yu-Xiang Hong ◽  
Chung-Yu Chen

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


Sign in / Sign up

Export Citation Format

Share Document