Application Study on Finger Joint Motion in Rehabilitation Training

2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.

1998 ◽  
Vol 23 (6) ◽  
pp. 792-795 ◽  
Author(s):  
N. SOMIA ◽  
G. S. RASH ◽  
M. WACHOWIAK ◽  
A. GUPTA

We studied the initiation and sequence of digital joint motion during unrestricted flexion and extension using a 3-D motion analysis of all fingers moving simultaneously. Our results showed that motion started in a single joint in 83% of flexion and 80% of extension cycles. The DIP joint initiated flexion and extension in the index, middle, and ring fingers, but in the little finger, flexion started in the PIP joint, and extension in the MP joint. The two most frequent sequences of joint movement during flexion of the three radial fingers were DIP-PIP-MP and PIP-DIP-MP. The two most frequent sequences during extension of the three radial fingers were DIP-MP-PIP followed by DIP-MP/PIP. In the little finger, however, the most frequent sequences during flexion were PIP-DIP-MP followed by DIP-PIP-MP and during extension, DIP-MP/PIP followed by PIP/DIP-MP


2007 ◽  
Vol 32 (4) ◽  
pp. 417-420 ◽  
Author(s):  
S. GOKREM ◽  
D. TUNCALI ◽  
A. TERZIOGLU ◽  
K. TOKSOY ◽  
G. ASLAN

The cross-finger flap has been used successfully for decades. Traditionally, the flap is elevated in the plane lying superficial to the extensor tendon. This damages the delicate subcutaneous tissues, which are important for the lengthening capacity of the skin of the dorsum of the fingers during flexion and extension. In this report, we present a modification of elevation of the cross-finger flap in a plane superficial to the dorsal veins of the fingers. This modification prevents donor finger complications such as poor graft take, extensor tendon adhesion to the graft and reduced range of finger joint movement and contour deformities. We have used this technique in six digits in four patients with successful results.


2018 ◽  
Vol 38 (5) ◽  
pp. 595-605 ◽  
Author(s):  
Wencheng Ni ◽  
Hui Li ◽  
Zhihong Jiang ◽  
Bainan Zhang ◽  
Qiang Huang

Purpose The purpose of this paper is to design an exoskeleton robot and present a corresponding rehabilitation training method for patients in different rehabilitation stages. Design/methodology/approach This paper presents a lightweight seven-degrees-of-freedom (DOF) cable-driven exoskeleton robot that is wearable and adjustable. After decoupling joint movement caused by a cable-driven mechanism, active rehabilitation training mode and passive rehabilitation training mode are proposed to improve the effect of rehabilitation training. Findings Simulations and experiments have been carried out, and the results validated the feasibility of the proposed mechanism and methods by a fine rehabilitative effect with different persons. Originality/value This paper designed a 7-DOF cable-driven exoskeleton robot that is suitable for patients of different body measurements and proposed the active rehabilitation training mode and passive rehabilitation training mode based on the cable-driven exoskeleton robot.


2011 ◽  
Vol 138-139 ◽  
pp. 273-278 ◽  
Author(s):  
Xiao Li ◽  
Fan He ◽  
Xia Hong ◽  
Ting Guan

To solve the problem of the time-delay, nonlinear and time-variable characteristics of hip-joint rehabilitation training device driven by pneumatic muscle actuator, an implicit generalized predictive controller was designed based on parameter model in this paper. It was applied to the isokinetic continuous passive motion control of the hip-joint rehabilitation training device. Experimental results proved that the controller has the property of high control accuracy, anti-disturbance capability and excellent adaptive abilities for the changes of system model parameters, compared with PID controller. This control method provides the beneficial reference for improving the control performance of such system.


JEMAP ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Albertus Reynaldo Kurniawan ◽  
Bayu Prestianto

Quality control becomes an important key for companies in suppressing the number of defective produced products. Six Sigma is a quality control method that aims to minimize defective products to the lowest point or achieve operational performance with a sigma value of 6 with only yielding 3.4 defective products of 1 million product. Stages of Six Sigma method starts from the DMAIC (Define, Measure, Analyze, Improve and Control) stages that help the company in improving quality and continuous improvement. Based on the results of research on baby clothes products, data in March 2018 the percentage of defective products produced reached 1.4% exceeding 1% tolerance limit, with a Sigma value of 4.14 meaning a possible defect product of 4033.39 opportunities per million products. In the pareto diagram there were 5 types of CTQ (Critical to Quality) such as oblique obras, blobor screen printing, there is a fabric / head cloth code on the final product, hollow fabric / thin fabric fiber, and dirty cloth. The factors caused quality problems such as Manpower, Materials, Environtment, and Machine. Suggestion for consideration of company improvement was continuous improvement on every existing quality problem like in Manpower factor namely improving comprehension, awareness of employees in producing quality product and improve employee's accuracy, Strength Quality Control and give break time. Materials by making the method of cutting the fabric head, the Machine by scheduling machine maintenance and the provision of needle containers at each employees desk sewing and better environtment by installing exhaust fan and renovating the production room.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Author(s):  
Mansoor Amiri ◽  
Farhad Tabatabai Ghomsheh ◽  
Farshad Ghazalian

The purpose of this study was to model the resistance mechanism of Passive Knee Joint Flexion and Extension to create a similar torque mechanism in rehabilitation equipment. In order to better model the behavior of passive knee tissues, it is necessary to exactly calculate the two coefficients of elasticity of time-independent and time-dependent parts. Ten healthy male volunteers (mean height 176.4+/−4.59 cm) participated in this study. Passive knee joint flexion and extension occurred at velocities of 15, 45, and 120 (degree/s), and in five consecutive cycles and within the range of 0 to 100° of knee movement on the sagittal plane on Cybex isokinetic dynamometer. To ensure that the muscles were relaxed, the electrical activity of knee muscles was recorded. The elastic coefficient, (KS) increased with elevating the passive velocity in flexion and extension. The elastic coefficient, (KP) was observed to grow with the passive velocity increase. While, the viscous coefficient (C) diminished with passive velocity rise in extension and flexion. The heightened passive velocity of the motion resulted in increased hysteresis (at a rate of 42%). The desired of passive velocity is lower so that there is less energy lost and the viscoelastic resistance of the tissue in the movement decreases. The Coefficient of Determination, R2 between the model-responses and experimental curves in the extension was 0.96 < R2 < 0.99 and in flexion was 0.95 < R2 < 0.99. This modeling is capable of predicting the true performance of the components of passive knee movement and we can create a resistance mechanism in the rehabilitation equipment to perform knee joint movement. Quantitative measurements of two elastic coefficients of Time-independent and Time-dependent parts passive knee joint coefficients should be used for better accurate simulation the behavior of passive tissues in the knee which is not seen in other studies.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 26568-26582
Author(s):  
Hongbo Wang ◽  
Jingyuan Chang ◽  
Haoyang Yu ◽  
Haiyang Liu ◽  
Chao Hou ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1587
Author(s):  
Krzysztof Wrobel ◽  
Krzysztof Tomczewski ◽  
Artur Sliwinski ◽  
Andrzej Tomczewski

This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.


Sign in / Sign up

Export Citation Format

Share Document