scholarly journals Mycobiota on exoskeleton debris of Neohelice granulata in an alkaline-sodic salt marsh: in vitro enzyme ability at different temperatures and pH

2021 ◽  
Vol 93 (suppl 3) ◽  
Author(s):  
NATALIA A. FERRERI ◽  
LORENA A. ELÍADES ◽  
MARIO C.N. SAPARRAT ◽  
TAMARA M. LEDESMA ◽  
LETICIA RUSSO ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.


2008 ◽  
Vol 2 (1) ◽  
pp. 19-22 ◽  
Author(s):  
Joanna Podporska ◽  
Marta Błażewicz ◽  
Barbara Trybalska ◽  
Łukasz Zych

Until now the basic methods used in manufacturing of wollastonite have been chemical (melting together with glass crystallization process, chemical coprecipitation) and sol - gel methods. A new and promising way of wollastonite fabrication is controlled pyrolysis of polysiloxane precursors with inorganic fillers. Heat treatment of such mixtures leads to the formation of wollastonite-containing ceramics already at about 1000?C. This is a relatively inexpensive and efficient method which enables to obtain complex shapes of the samples. The aim of this work was to obtain sintered, wollastonite-containing bioceramics and determine its bioactive features. Samples were sintered at three different temperatures: 1000, 1100 and 1200?C. Then the bioactivity of the wollastonite-containing ceramics was investigated by the ?in vitro? test in simulated body fluid. On the basis of the achieved results, it can be assumed that the obtained material possesses bioactive features.


Author(s):  
Bilgin Taşkın

Kefir; is a fermented milk product which is produced by granules containing a wide variety of microorganisms such as lactic acid bacteria, acetic acid bacteria and yeasts. It is traditionally consumed in many countries. It has been shown in many studies that the polysaccharide structure surrounding the granules which is composed mainly of kefiran molecule has antimicrobial effect against various pathogens as well as many health promoting effects. In this study, 24 h fermented kefir was used with two types of kefir granules for production of kefiran extract. One of them is being sold commercially and the other was collected from private households in a different region of Turkey. Kefiran extraction was carried out from matured kefir granules using three different temperatures, 80°C, 90°C and 100°C. Also, the protein contents of the extracted solutions were determined by Bradford method. Protein content of the extract solutions obtained were measured as 0.001 g/ml. The antibacterial effect of 0.05, 0.1, 1 and 2 mg of this extract against several plant pathogenic bacterial strains belonging to genus Pseudomonas, Xanthomonas, Erwinia ve Clavibacter was investigated in vitro for the first time. For this purpose, two methods, disc diffusion method and spreading method were used. The AN and SD kefir supernatants used as the positive controls in the experiments showed an average of 13-17 mm and 10-14 mm inhibition zones on the isolates, respectively, but the antibacterial effect of kefiran extracts was not observed.


2015 ◽  
Vol 20 (6) ◽  
pp. 316-320 ◽  
Author(s):  
Young Suk Kwon ◽  
So Young Lim ◽  
Jong Ho Kim ◽  
Ji Su Jang ◽  
Chul Ho Kim ◽  
...  

BACKGROUND: Understanding the size and shape of radiofrequency lesions is important to reduce side effects when applied to patients.OBJECTIVES: To investigate the radiofrequency lesions produced by the application of the Tew electrode for different temperatures and times.METHODS: The white from a fresh hen’s egg was placed in a rectangular glass container and warmed to 37°C. After immersion of the Tew electrode in the egg white, radiofrequency lesions were produced at 65°C, 70°C, 75°C, 80°C, 85°C and 90°C. For each temperature, photographs were taken at 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s and 120 s. The size of the lesion was measured at each temperature and time. A mixed model was used to analyze the data.RESULTS: The size of the lesion increased with increasing temperature and time. There were statistically significant differences in the size of the internal radius between the 65°C and 70°C groups and the 70°C and 75°C groups, as well as in the 70°C and 75°C groups in the size of the external radius and the 60°C to 80°C groups in the size of the distal radius. The maximum lesion size was produced at 90°C and 120 s, and was 1.06±0.16 mm in internal radius, 0.37±0.15 mm in external radius, 0.39±0.04 mm in distal radius.CONCLUSION: The Tew electrode produces lesions following the contour of the tip, and the internal radius is larger than the external and distal radius. The best combination of temperature and time for lesioning using the Tew electrode is 80°C, for 60 s to 90 s.


2015 ◽  
Vol 820 ◽  
pp. 335-340 ◽  
Author(s):  
Flávia R.O. Silva ◽  
Nelson B. de Lima ◽  
Deiby S. Gouveia ◽  
Nildemar A.M. Ferreira ◽  
Valter Ussui ◽  
...  

Hydroxyapatite (HA) doped with europium (HAEu) offers the advantage of making the hydroxyapatite a fluorescent biomarker, allowing their imaging through emissionin vivoandin vitrotests. Several authors had been based their studies about europium site occupation (CaI and CaII) in hydroxyapatite by the lanthanide ion luminescence, verifying the influence of the method of synthesis and concentration of the dopant ion. In this study HA nanoparticles doped with 1.4 mol% of trivalent europium were synthesized by co-precipitation method and thermal treated at different temperatures (600°C and 1200°C). A careful evaluation of the influence of the excitation wavelength of europium luminescence in the HAEu was performed and it has been verified that both the characteristics transitions of europium, at CaI and CaII sites, and the luminescent intensity are dependent on the excitation wavelength. The non-observance of this fact can lead to erroneous conclusions about the site occupation of europium in hydroxyapatites.


1963 ◽  
Vol 42 (4) ◽  
pp. 498-508 ◽  
Author(s):  
D. Gospodarowicz ◽  
J. Legault-Démare

ABSTRACT Temperature has been shown to have a profound effect on the incorporation of 14C acetate into steroids by rat corpus luteum in vitro. The variations of temperature affected to a different extent the labelling of progesterone and androstenedione. Differences were also found between cyclic and pseudopregnancy corpora lutea studied at different temperatures and stimulated or not by pregnant mare serum gonadotrophin (PMS) in vitro. These results are consistent with the hypothesis that progesterone and androstenedione are synthesized through different pathways. They also suggest that lactogenic hormone stimulates specifically the synthesis of androstenedione.


2009 ◽  
Vol 106 (2) ◽  
pp. 378-384 ◽  
Author(s):  
H. Roots ◽  
G. Ball ◽  
J. Talbot-Ponsonby ◽  
M. King ◽  
K. McBeath ◽  
...  

In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C ( n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue.


Sign in / Sign up

Export Citation Format

Share Document