scholarly journals Effect of temperature, CO2 and O2 on motility and mobility of Anisakidae larvae

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Alexandre Beaudry ◽  
Marlène Fortier ◽  
Stéphane Masson ◽  
Michel Auffret ◽  
Pauline Brousseau ◽  
...  

The blue mussel is a filter-feeding bivalve commonly used in ecotoxicological monitoring as a sentinel species. Due to climate change and the increase of temperature expected in marine environment, it is important to anticipate potential impacts on this species. The aim of this study was to investigate the immunocompetence of blue mussels acclimated to different temperatures and on the effects of increasing temperatures (5, 10 and 20°C). Different indices and gonad maturation stages were also determined throughout the experiments. Cell viability, phagocytosis, serum lysozyme activity and cyclooxygenase (COX) activity were evaluated as immune parameters. The cellular immunity was also evaluated after hemocytes exposure to various cadmium concentrations <em>in vitro</em>. The results obtained demonstrate modulation of hemocyte viability and the ability of these cells to phagocytize in absence of contaminants. After the exposure to cadmium, hemocytes showed greater viability at 5°C while maintaining a higher phagocytic competence. In addition, the lysozyme activity stayed stable at all tested temperatures, contrary to that of COX, which increased when the mussels were maintained at 20°C. The evaluation of indices demonstrated no reduction of general conditions during all the experiment despite the increase of temperature and the reduction of the digestive gland weight. Moreover, the lack of food does not affect gonad maturation and the spawning process.


2021 ◽  
Vol 43 (1) ◽  
pp. 41-41
Author(s):  
Sura Ali AL ASADI Sura Ali AL ASADI ◽  
Muhammed Mizher RADHI and Wisam Hindawi HOIDY Muhammed Mizher RADHI and Wisam Hindawi HOIDY

The cyclic voltammetric electrochemical technique was utilized to investigate the effect of different temperatures on the redox current peaks of rifampicin (RF), a drug commonly used to treat many diseases including tuberculosis (TB), in vitro for human blood medium. A modified working electrode of glassy carbon electrode (GCE) with carbon nanotube (CNT) (CNT / GCE) was used as a sensitive nano-sensor to evaluate the impact of temperature on the blood medium in the presence of RF ions. The results confirmed the presence of two oxidation and one reduction current peaks of RF in blood medium at 0.5, 1, and -0.5 V respectively. The redox current peaks of RF ions in blood medium were enhanced with increasing the temperature from 20 to 36oC. The activation energy (E*) values were determined by applying Arrhenius equation with oxidative and anti-oxidative peaks of Ea*(Ipa)= 9.252 and 11.026 kJ.mol-1.K-1,respectively. Other thermodynamic functions such as the change in each of activation Enthalpy (ΔH*), activation Gibbs energy (ΔG*) and activation Entropy (ΔS*) values were estimated using Eyring equation. The present results of the effects of different temperatures on the blood status in presence of RF lead to the explanation of the oxidative stress of the drug which used in an inflammatory of blood at different temperature.


1991 ◽  
Vol 46 (9-10) ◽  
pp. 856-860 ◽  
Author(s):  
Daniel L. Kunkel ◽  
John C. Steffens ◽  
Robin R. Bellinder

Abstract Studies were conducted to determine the biochemical aspects of chloroacetamide injury to maize and the mechanism by which safeners maintain herbicide tolerance, even at reduced temperatures. The objectives of these studies were threefold: one, determine whether gluta­thione (GSH) content varies in maize plants grown at three different temperatures in safener-treated and non-treated plants; two, determine whether glutathione S-transferase (GST) activ­ity varies in plants grown at different temperatures; and three, determine if GSH activity is sensitive to low temperatures in vitro. The herbicide safeners CGA -154281 [4-(dichloroacetyl)-3,4-dihydro-3-methyl-2 H-1 ,4-benzoxazine] and dichlormid [2,2-dichloro-N,N-di-2-propenylacetamide] were used with metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-n-(2-methoxy-1-methyl)acetamide] or acetochlor [2-chloro-N-(ethoxymethyl)-N-2-ethyl-6-methylphenyl)-acetamide], respectively, to determine the mechanisms of maize tolerance. CGA -154281 signifi­cantly increased GSH levels in maize seedlings grown at 27 °C compared to non-safened seed­lings, however significant differences were not seen at 17 or 37 °C. Dichlormid increased GSH levels by 1.6-fold at all growth temperatures. Both CGA -154281 and dichlormid increased GST activity significantly at all growth temperatures. The safener-induced GST activity was main­tained at in vitro incubation temperatures of 5 and 15 °C for acetochlor and metolachlor, re­spectively. In contrast, GST activity from non-safened tissue was essentially absent at these temperatures. Therefore, greater GST activity following safener treatment may result in higher levels of herbicide metabolism, even at low temperatures.


1994 ◽  
Vol 21 (2) ◽  
pp. 79-81
Author(s):  
P. V. Subba Rao ◽  
P. Subrahmanyam ◽  
D. McDonald

Abstract Effect of temperature on urediniospore production in Puccinia arachidis was investigated under monocyclic infection using detached leaves of the susceptible peanut (Arachis hypogaea L.) cultivar TMV 2. Urediniospores produced at different temperatures were also examined for their germinability in vitro. The optimal temperature for urediniospore production was at about 20 and 25 C. Temperatures below 20 C or above 30 C were highly detrimental to urediniospore production. There were also marked differences in the percent germination of urediniospores produced at different temperatures. Urediniospores produced at 20 and 25 C showed the highest germination percentages. The interaction of temperature with urediniospore production and germinability is important in understanding the development of peanut rust epidemics.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 442-445 ◽  
Author(s):  
D. S. Mueller ◽  
J. W. Buck

Experiments in controlled environments were completed to determine the influence of light intensity, temperature, and leaf wetness duration on daylily rust caused by Puccinia hemerocallidis. As light intensity increased, there was a significant decrease in urediniospore germination (R2 = 0.88 and Y = 96 - 0.6x). Urediniospores germinated in vitro between 7 and 34°C with an optimal temperature of 22 to 24°C. To test the effect of temperature on infection efficiency, plants were inoculated with urediniospores, incubated under high relative humidity at 4, 10, 22, 30, or 36°C, and then transferred to a greenhouse at 23°C for 15 days. Plants incubated at 22°C had an average of 13 lesions cm leaf-1. Incubation temperatures of 4, 10, 30, or 36°C resulted in less than 1.5 lesions cm leaf-1. Plants were inoculated, incubated at 22°C for 24 h, and then incubated at different temperatures for 15 days to test the effect of temperature on disease development. There were no significant differences in disease development at 22 and 30°C; however, there were significantly fewer lesions at 10°C and no lesions developed at 36°C within 15 days. Five to six h of leaf wetness were required for lesion development and as the duration of leaf wetness increased, there was a significant increase in the number of lesions that developed. These studies indicate that for disease development of P. hemerocallidis on daylily, temperatures around 22°C and 5 h of leaf wetness are required during infection. However, once a daylily is infected, disease development is not as sensitive to environmental conditions.


2019 ◽  
Vol 28 (5) ◽  
pp. 638-644 ◽  
Author(s):  
M. Skog ◽  
Petter Sivlér ◽  
Ingrid Steinvall ◽  
Daniel Aili ◽  
Folke Sjöberg ◽  
...  

Severe burns are often treated by means of autologous skin grafts, preferably following early excision of the burnt tissue. In the case of, for example, a large surface trauma, autologous skin cells can be expanded in vitro prior to transplantation to facilitate the treatment when insufficient uninjured skin is a limitation. In this study we have analyzed the impact of the enzyme (trypsin or accutase) used for cell dissociation and the incubation time on cell viability and expansion potential, as well as expression of cell surface markers indicative of stemness. Skin was collected from five individuals undergoing abdominal reduction surgery and the epidermal compartment was digested in either trypsin or accutase. Trypsin generally generated more cells than accutase and with higher viability; however, after 7 days of subsequent culture, accutase-digested samples tended to have a higher cell count than trypsin, although the differences were not significant. No significant difference was found between the enzymes in median fluorescence intensity of the analyzed stem cell markers; however, accutase digestion generated significantly higher levels of CD117- and CD49f-positive cells, but only in the 5 h digestion group. In conclusion, digestion time appeared to affect the isolated cells more than the choice of enzyme.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3516
Author(s):  
Daan R. Löke ◽  
Roxan F. C. P. A. Helderman ◽  
Jan Sijbrands ◽  
Hans M. Rodermond ◽  
Pieter J. Tanis ◽  
...  

Background: Hyperthermic intraperitoneal chemotherapy (HIPEC) after cytoreductive surgery (CRS) is used for treating peritoneal metastases of various origins. Present HIPEC protocols have rarely been validated for relevant parameters such as optimal agent, duration and perfusate temperature. In vitro experiments are not completely representative of clinical circumstances. Therefore, a good preclinical in vivo HIPEC model is needed in which temperature distributions can be well-controlled and are stable throughout treatments. Methods: We designed a setup able to generate and maintain a homogeneous flow during a 90-min HIPEC procedure using our in-house developed treatment planning tools and computer aided design (CAD) techniques. Twelve rats were treated with heated phosphate-buffered saline (PBS) using two catheter setups (one vs. four- inflows) and extensive thermometry. Simulated and measured thermal distribution and core temperatures were evaluated for the different setups. Results: Overall, the four-inflow resulted in more stable and more homogeneous thermal distributions than the one-inflow, with lower standard deviations (0.79 °C vs. 1.41 °C at the outflow, respectively) and less thermal losses. The average thermal loss was 0.4 °C lower for rats treated with the four-inflow setup. Rat core temperatures were kept stable using occasional tail cooling, and rarely exceeded 39 °C. Conclusion: Increasing the number of inflow catheters from one to four resulted in increased flow and temperature homogeneity and stability. Tail cooling is an adequate technique to prevent rats from overheating during 90-min treatments. This validated design can improve accuracy in future in vivo experiments investigating the impact of relevant parameters on the efficacy of different HIPEC protocols.


2012 ◽  
Vol 476-478 ◽  
pp. 75-80 ◽  
Author(s):  
Li Ping Zhong ◽  
Jia Yong Si ◽  
Zi Qiao Zheng

The impact toughness of ZA27 alloy at different temperatures is investigated by pendulum impact testing. In addition, the morphology of impact fracture surface observed by SEM. The results indicate that impact energy of ZA27 alloy is reduced with the temperature rising when the temperature is lower than 100°C. At 100°C to 200°C, impact energy increase as the temperature rising. And when the temperature reaches to 250°C, impact energy suddenly descend. Impact energy is the highest and reaches to 72.768J at 20°C. At impact fracture surface, it is mostly tear ridges and dimples. The higher the impact energy is, the more obvious the characteristic of tear ridges is. Furthermore, dimples are small and distribute more uniformly. Lower the impact energy, the less distinct of tear ridges. Dimples are larger and deeper, their distribution are not uniform. Impact behavior of material could be evaluated by the width of impact curve. The wider the peak of impact curve, the higher the impact toughness. But impact toughness is worse while peak is narrow.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 492 ◽  
Author(s):  
Magdalena Buniowska ◽  
Eva Arrigoni ◽  
Agata Znamirowska ◽  
Jesús Blesa ◽  
Ana Frígola ◽  
...  

The consumption of a varied diet rich in fruit and vegetables helps prevent and treat certain chronic diseases. The development of smoothies based on derivatives from fruit and vegetables rich in bioactive compounds can help increase the consumption of these foods, and therefore, contribute to the prevention of various health problems. However, during the processing of the fruit and vegetable smoothies, these properties may change. The elaboration of smoothies is based on fruits and vegetables rich in carotenoids: Carrot juice-papaya-mango (smoothie A) and carrot juice-pumpkin-mango (smoothie B). The objective of this study is to evaluate the impact of the application of different thermal technologies (mild and intensive heat treatment) and non-conventional technologies (ultrasound) on carotenoids (α-carotene, β-carotene, lutein and β-cryptoxantin) and determine the physiochemical parameters of derivatives from fruit and vegetable smoothies. In addition, the bioaccessibility of carotenoids is also evaluated through a process of in vitro simulated digestion. With regard to the bioaccessibility of the fruit and vegetable smoothies analyzed, a positive effect of temperature on liberation and micellarization was observed.


1979 ◽  
Vol 19 (101) ◽  
pp. 725 ◽  
Author(s):  
PJ Farlow ◽  
DE Byth ◽  
NS Kruger

A technique for in vitro germination of French bean pollen was developed and the effect of temperature on gamete development, pollen germination and seed set investigated. Temperature had a profound effect on in vitro pollen germination percentage, pollen tube growth and bursting percentage. These were maximal at 7.2�C, 16.7�C and 38.3�C, respectively. In this study, pollen development was not affected at day/night temperatures of 16.1�/12.8�C, and ovule abortion was the cause of seed set failure at these temperatures. Hot water treatment (48�-44�C) of flowers caused failure of seed set due to pollen inviability. Consequently this technique may allow hybridization without emasculation in beans. Treatment of buds with hot water of different temperatures and in vitro pollen germination at high temperatures may have application as screening techniques for heat tolerance in French beans.


Sign in / Sign up

Export Citation Format

Share Document